7 research outputs found

    Cyclophilin D regulates lifespan and protein expression of aging markers in the brain of mice

    Get PDF
    Abstract Cyclophilin D (cypD) modulates the properties of the permeability transition pore, a phenomenon implicated in the manifestation of many diseases including aging. Here, we examined the effects of partial or complete deletion of cypD on i) lifespan, ii) forebrain protein expression of 18 aging markers as well as regional expression of GFAP, mGluR1, and alpha-synuclein, and iii) behaviour of aged (> 24 month) male and female mice. Both male and female cypD heterozygous but not KO mice exhibited increased lifespans compared to WT littermates, associated with alterations in the protein expression of some markers, albeit without exhibiting changes in behaviour

    The Roles of Coronary Computed Tomography Angiography in Characterizing Coronary Plaque: Screening, Treatment, and Prevention

    No full text
    One of the major risk factors for coronary atherosclerosis is the gradual formation and maturation of coronary atherosclerotic plaque (CAP) [...

    The Roles of Coronary Computed Tomography Angiography in Characterizing Coronary Plaque: Screening, Treatment, and Prevention

    No full text
    One of the major risk factors for coronary atherosclerosis is the gradual formation and maturation of coronary atherosclerotic plaque (CAP) [...

    Barth Syndrome: Psychosocial Impact and Quality of Life Assessment

    No full text
    Background: Barth syndrome (BTHS) is a rare X-linked genetic disease that affects multiple systems and leads to complex clinical manifestations. Although a considerable amount of research has focused on the physical aspects of the disease, less has focused on the psychosocial impact and quality of life (QoL) in BTHS. Methods: The current study investigated caregiver- (n = 10) and self-reported (n = 16) psychological well-being and QoL in a cohort of BTHS-affected patients and families. Participants completed the depression and anxiety components of the Patient-Reported Outcomes Information System (PROMIS) Short Form 8A and Health-related quality of life (HRQoL) surveys at enrollment and again during a follow-up period ranging from 6 to 36 months after baseline. Results: Quality of life changed significantly over time and the various domains with some improvement and some decline. Among the available caregiver-patient dyad data, there was a trend toward discordance between caregiver and self-reported outcomes. Most notably, patients reported improvement in HRQoL, while caregivers reported declines. This suggests that there may be differences in perceived quality of life between the patients and parents, though our study is limited by small sample size. Conclusion: Our study provides valuable insights into the impacts of psychosocial and mental health aspects of BTHS. Implications of these findings include incorporating longitudinal assessment of QoL and screening for psychological symptoms in BTHS care to identify interventions that may drastically impact health status and the course of the disease

    Mitochondrial diaphorases as NAD+ donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition

    No full text
    Substrate-level phosphorylation mediated by succinyl-CoA ligase in the mitochondrial matrix produces high-energy phosphates in the absence of oxidative phosphorylation. Furthermore, when the electron transport chain is dysfunctional, provision of succinyl-CoA by the alpha-ketoglutarate dehydrogenase complex (KGDHC) is crucial for maintaining the function of succinyl-CoA ligase yielding ATP, preventing the adenine nucleotide translocase from reversing. We addressed the source of the NAD+ supply for KGDHC under anoxic conditions and inhibition of complex I. Using pharmacologic tools and specific substrates and by examining tissues from pigeon liver exhibiting no diaphorase activity, we showed that mitochondrial diaphorases in the mouse liver contribute up to 81% to the NAD+ pool during respiratory inhibition. Under these conditions, KGDHC's function, essential for the provision of succinyl-CoA to succinyl-CoA ligase, is supported by NAD+ derived from diaphorases. Through this process, diaphorases contribute to the maintenance of substrate-level phosphorylation during respiratory inhibition, which is manifested in the forward operation of adenine nucleotide translocase. Finally, we show that reoxidation of the reducible substrates for the diaphorases is mediated by complex III of the respiratory chain.-Kiss, G., Konrad, C., Pour-Ghaz, I., Mansour, J. J., Nemeth, B., Starkov, A. A., Adam-Vizi, V., Chinopoulos, C. Mitochondrial diaphorases as NAD+ donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition
    corecore