22 research outputs found

    BDNF Actions in the Cardiovascular System: Roles in Development, Adulthood and Response to Injury

    Get PDF
    The actions of BDNF (Brain-derived Neurotrophic Factor) in regulating neuronal development and modulating synaptic activity have been extensively studied and well established. Equally important roles for this growth factor have been uncovered in the cardiovascular system, through the examination of gene targeted animals to define critical actions in development, and to the unexpected roles of BDNF in modulating the response of the heart and vasculature to injury. Here we review the compartmentally distinct realm of cardiac myocytes, vascular smooth muscle cells, endothelial cells, and hematopoietic cells, focusing upon the actions of BDNF to modulate contractility, migration, neoangiogenesis, apoptosis and survival. These studies indicate that BDNF is an important growth factor which directs the response of the cardiovascular system to acute and chronic injury

    Trkb signaling in pericytes is required for cardiac microvessel stabilization

    Get PDF
    Pericyte and vascular smooth muscle cell (SMC) recruitment to the developing vasculature is an important step in blood vessel maturation. Brain-derived neurotrophic factor (BDNF), expressed by endothelial cells, activates the receptor tyrosine kinase TrkB to stabilize the cardiac microvasculature in the perinatal period. However, the effects of the BDNF/TrkB signaling on pericytes/SMCs and the mechanisms downstream of TrkB that promote vessel maturation are unknown. To confirm the involvement of TrkB in vessel maturation, we evaluated TrkB deficient (trkb (-/-)) embryos and observed severe cardiac vascular abnormalities leading to lethality in late gestation to early prenatal life. Ultrastructural analysis demonstrates that trkb(-/-) embryos exhibit defects in endothelial cell integrity and perivascular edema. As TrkB is selectively expressed by pericytes and SMCs in the developing cardiac vasculature, we generated mice deficient in TrkB in these cells. Mice with TrkB deficiency in perivascular cells exhibit reduced pericyte/SMC coverage of the cardiac microvasculature, abnormal endothelial cell ultrastructure, and increased vascular permeability. To dissect biological actions and the signaling pathways downstream of TrkB in pericytes/SMCs, human umbilical SMCs were treated with BDNF. This induced membranous protrusions and cell migration, events dependent on myosin light chain phosphorylation. Moreover, inhibition of Rho GTPase and the Rho-associated protein kinase (ROCK) prevented membrane protrusion and myosin light chain phosphorylation in response to BDNF. These results suggest an important role for BDNF in regulating migration of TrkB-expressing pericytes/SMCs to promote cardiac blood vessel ensheathment and functional integrity during development

    Neurotrophins promote revascularization by local recruitment of TrkB(+) endothelial cells and systemic mobilization of hematopoietic progenitors

    No full text
    The neurotrophin brain-derived neurotrophic factor (BDNF) is required for the maintenance of cardiac vessel wall stability during embryonic development through direct angiogenic actions on endothelial cells expressing the tropomysin receptor kinase B (TrkB). However, the role of BDNF and a related neurotrophin ligand, neurotrophin-4 (NT-4), in the regulation of revascularization of the adult tissues is unknown. To study the potential angiogenic capacity of BDNF in mediating the neovascularization of ischemic and non-ischemic adult mouse tissues, we utilized a hindlimb ischemia and a subcutaneous Matrigel model. Recruitment of endothelial cells and promotion of channel formation within the Matrigel plug by BDNF and NT-4 was comparable to that induced by VEGF-A. The introduction of BDNF into non-ischemic ears or ischemic limbs induced neoangiogenesis, with a 2-fold increase in the capillary density. Remarkably, treatment with BDNF progressively increased blood flow in the ischemic limb over 21 days, similar to treatment with VEGF-A. The mechanism by which BDNF enhances capillary formation is mediated in part through local activation of the TrkB receptor and also by recruitment of Sca-1(+)CD11b(+) pro-angiogenic hematopoietic cells. BDNF induces a potent direct chemokinetic action on subsets of marrow-derived Sca-1(+) hematopoietic cells co-expressing TrkB. These studies suggest that local regional delivery of BDNF may provide a novel mechanism for inducing neoangiogenesis through both direct actions on local TrkB-expressing endothelial cells in skeletal muscle and recruitment of specific subsets of TrkB(+) bone marrow–derived hematopoietic cells to provide peri-endothelial support for the newly formed vessels
    corecore