1,429 research outputs found

    The distance selling directive: consumer champion or complete irrelevance?

    Get PDF
    This paper investigates the origins, significant content, UK and EU implementation and outcomes of Directive 97/7/EC on distance selling, hereafter referred to as the Distance Selling Directive (DSD). The DSD has been implemented in national legislation by all EU Member States. In the UK this legislation was the Consumer Protection (Distance Selling) Regulations 2000 (SI 2000 No. 2334), hereafter referred to as the CPDSR

    Yeast squalene synthase. A mechanism for addition of substrates and activation by NADPH

    Get PDF
    Journal ArticleSqualene synthase catalyzes the condensation of two molecules of farnesyl diphosphate (FPP) to give presqualene diphosphate (PSPP) and the subsequent reductive rearrangement of PSPP to squalene. Previous studies of the mechanism of addition of FPP to the enzyme have led to conflicting interpretations of initial velocity measurements (Beytia, E., Qureshi, A. A., and Porter, J.W. (1973) J. Biol. Chem. 248, 1856-1867; Agnew, W.S., and Popjak, G. (1978) J. Biol. Chem. 253, 4566-4573). Initial velocities for synthesis of PSPP and squalene were measured over a wider range of FPP and NADPH concentrations than previously reported, using a soluble form of recombinant enzyme. In the absence of NADPH, PSPP formation was activated by FPP at concentrations above approximately 0.5 microM. At fixed levels of NADPH, the dependence of initial rates of PSPP and squalene synthesis on FPP concentrations indicated that the C15 substrate added by a sequential mechanism. In addition, NADPH stimulated synthesis of PSPP by 40-fold at saturating levels of the cofactor. This stimulation is, at least in part, by reduction of PSPP to squalene

    ATOS-1: Designing the infrastructure for an advanced spacecraft operations system

    Get PDF
    The space industry has identified the need to use artificial intelligence and knowledge based system techniques as integrated, central, symbolic processing components of future mission design, support and operations systems. Various practical and commercial constraints require that off-the-shelf applications, and their knowledge bases, are reused where appropriate and that different mission contractors, potentially using different KBS technologies, can provide application and knowledge sub-modules of an overall integrated system. In order to achieve this integration, which we call knowledge sharing and distributed reasoning, there needs to be agreement on knowledge representations, knowledge interchange-formats, knowledge level communications protocols, and ontology. Research indicates that the latter is most important, providing the applications with a common conceptualization of the domain, in our case spacecraft operations, mission design, and planning. Agreement on ontology permits applications that employ different knowledge representations to interwork through mediators which we refer to as knowledge agents. This creates the illusion of a shared model without the constraints, both technical and commercial, that occur in centralized or uniform architectures. This paper explains how these matters are being addressed within the ATOS program at ESOC, using techniques which draw upon ideas and standards emerging from the DARPA Knowledge Sharing Effort. In particular, we explain how the project is developing an electronic Ontology of Spacecraft Operations and how this can be used as an enabling component within space support systems that employ advanced software engineering. We indicate our hope and expectation that the core ontology developed in ATOS, will permit the full development of standards for such systems throughout the space industry

    A Segmentation Algorithm for Characterizing Rise and Fall Segments in Seasonal Cycles: An Application to XCO2 to Estimate Benchmarks and Assess Model Bias

    Get PDF
    There is more useful information in the time series of satellite-derived column-averaged carbon dioxide (XCO2) than is typically characterized. Often, the entire time series is treated at once without considering detailed features at shorter timescales, such as nonstationary changes in signal characteristics amplitude, period and phase. In many instances, signals are visually and analytically differentiable from other portions in a time series. Each rise (increasing) and fall (decreasing) segment in the seasonal cycle is visually discernable in a graph of the time series. The rise and fall segments largely result from seasonal differences in terrestrial ecosystem production, which means that the segment's signal characteristics can be used to establish observational benchmarks because the signal characteristics are driven by similar underlying processes. We developed an analytical segmentation algorithm to characterize the rise and fall segments in XCO2 seasonal cycles. We present the algorithm for general application of the segmentation analysis and emphasize here that the segmentation analysis is more generally applicable to cyclic time series. We demonstrate the utility of the algorithm with specific results related to the comparison between satellite- and model-derived XCO2 seasonal cycles (20092012) for large bioregions across the globe. We found a seasonal amplitude gradient of 0.740.77 ppm for every 10 of latitude in the satellite data, with similar gradients for rise and fall segments. This translates to a southnorth seasonal amplitude gradient of 8 ppm for XCO2, about half the gradient in seasonal amplitude based on surface site in situ CO2 data (19 ppm). The latitudinal gradients in the period of the satellite-derived seasonal cycles were of opposing sign and magnitude (9 d per 10 latitude for fall segments and 10 d per 10 latitude for rise segments) and suggest that a specific latitude (2 N) exists that defines an inversion point for the period asymmetry. Before (after) the point of asymmetry inversion, the periods of rise segments are lesser (greater) than the periods of fall segments; only a single model could reproduce this emergent pattern. The asymmetry in amplitude and the period between rise and fall segments introduces a novel pattern in seasonal cycle analyses, but, while we show these emergent patterns exist in the data, we are still breaking ground in applying the information for science applications. Maybe the most useful application is that the segmentation analysis allowed us to decompose the model biases into their correlated parts of biases in amplitude, period and phase independently for rise and fall segments. We offer an extended discussion on how such information about model biases and the emergent patterns in satellite-derived seasonal cycles can be used to guide future inquiry and model development

    Presentations of major peripheral arterial disease and risk of major outcomes in patients with type 2 diabetes: results from the ADVANCE-ON study.

    Get PDF
    BACKGROUND: Peripheral arterial disease (PAD) is known to be associated with high cardiovascular risk, but the individual impact of PAD presentations on risk of macrovascular and microvascular events has not been reliably compared in patients with type 2 diabetes. We aimed to evaluate the impact of major PAD, and its different presentations, on the 10-year risk of death, major macrovascular events, and major clinical microvascular events in these patients. METHODS: Participants in the action in diabetes and vascular disease: PreterAx and DiamicroN modified-release controlled evaluation (ADVANCE) trial and the ADVANCE-ON post-trial study were followed for a median of 5.0 (in-trial), 5.4 (post-trial), and 9.9 (overall) years. Major PAD at baseline was subdivided into lower-extremity chronic ulceration or amputation secondary to vascular disease and history of peripheral revascularization by angioplasty or surgery. RESULTS: Among 11,140 participants, 516 (4.6 %) had major PAD at baseline: 300 (2.7 %) had lower-extremity ulceration or amputation alone, 190 (1.7 %) had peripheral revascularization alone, and 26 (0.2 %) had both presentations. All-cause mortality, major macrovascular events, and major clinical microvascular events occurred in 2265 (20.3 %), 2166 (19.4 %), and 807 (7.2 %) participants, respectively. Compared to those without PAD, patients with major PAD had increased rates of all-cause mortality (HR 1.35, 95 % CI 1.15-1.60, p = 0.0004), and major macrovascular events (1.47 [1.23-1.75], p < 0.0001), after multiple adjustments for region of origin, cardiovascular risk factors and treatments, peripheral neuropathy markers, and randomized treatments. We have also observed a trend toward an association of baseline PAD with risk of major clinical microvascular events [1.31 (0.96-1.78), p = 0.09]. These associations were comparable for patients with a lower-extremity ulceration or amputation and for those with a history of peripheral revascularization. Furthermore, the risk of retinal photocoagulation or blindness, but not renal events, increased in patients with lower-extremity ulceration or amputation [1.53 (1.01-2.30), p = 0.04]. CONCLUSIONS: Lower-extremity ulceration or amputation, and peripheral revascularization both increased the risks of death and cardiovascular events, but only lower-extremity ulceration or amputation increased the risk of severe retinopathy in patients with type 2 diabetes. Screening for major PAD and its management remain crucial for cardiovascular prevention in patients with type 2 diabetes (ClinicalTrials.gov number, NCT00949286)

    Cancer risks of anti-hyperglycemic drugs for type 2 diabetes treatment - a clinical appraisal

    Get PDF
    AIM: A clinical appraisal of existing scientific literature sought to assess the need for long-term prospective epidemiological studies to investigate an increased cancer risk of anti-hyperglycemic medication in type 2 diabetes. METHOD: A focus statement was formulated as: "With a higher risk of cancers in patients with type 2 diabetes, all anti-hyperglycemic drugs should undergo long-term, prospective epidemiological studies for cancer risks." Field surveys were sent to practicing physicians and endocrinologists to identify the currently prevalent level of acceptance of this statement. Subsequently, a meeting with a six-member panel of key opinion leaders was held to discuss published evidence in support and against the statement. This publication reviews the publications and discussion points brought forth in this meeting and their effect on statement acceptance by the panel. RESULTS: Whereas the majority of field survey responders primarily agreed with the statement, panel members were divided in their statement support. This division remained intact after review of the literature. CONCLUSIONS: While there was evidence that type 2 diabetes is associated with an increased risk of cancer, existing studies seemed insufficient to definitively demonstrate a link between cancer risk and use of specific anti-hyperglycemic therapies

    A "superstorm": When moral panic and new risk discourses converge in the media

    Get PDF
    This is an Author's Accepted Manuscript of an article published in Health, Risk and Society, 15(6), 681-698, 2013, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/13698575.2013.851180.There has been a proliferation of risk discourses in recent decades but studies of these have been polarised, drawing either on moral panic or new risk frameworks to analyse journalistic discourses. This article opens the theoretical possibility that the two may co-exist and converge in the same scare. I do this by bringing together more recent developments in moral panic thesis, with new risk theory and the concept of media logic. I then apply this theoretical approach to an empirical analysis of how and with what consequences moral panic and new risk type discourses converged in the editorials of four newspaper campaigns against GM food policy in Britain in the late 1990s. The article analyses 112 editorials published between January 1998 and December 2000, supplemented with news stories where these were needed for contextual clarity. This analysis shows that not only did this novel food generate intense media and public reactions; these developed in the absence of the type of concrete details journalists usually look for in risk stories. Media logic is important in understanding how journalists were able to engage and hence how a major scare could be constructed around convergent moral panic and new risk type discourses. The result was a media ‘superstorm’ of sustained coverage in which both types of discourse converged in highly emotive mutually reinforcing ways that resonated in a highly sensitised context. The consequence was acute anxiety, social volatility and the potential for the disruption of policy and social change

    A segmentation algorithm for characterizing rise and fall segments in seasonal cycles: an application to XCO<sub>2</sub> to estimate benchmarks and assess model bias

    Get PDF
    There is more useful information in the time series of satellite-derived column-averaged carbon dioxide (XCO2) than is typically characterized. Often, the entire time series is treated at once without considering detailed features at shorter timescales, such as nonstationary changes in signal characteristics – amplitude, period and phase. In many instances, signals are visually and analytically differentiable from other portions in a time series. Each rise (increasing) and fall (decreasing) segment in the seasonal cycle is visually discernable in a graph of the time series. The rise and fall segments largely result from seasonal differences in terrestrial ecosystem production, which means that the segment's signal characteristics can be used to establish observational benchmarks because the signal characteristics are driven by similar underlying processes. We developed an analytical segmentation algorithm to characterize the rise and fall segments in XCO2 seasonal cycles. We present the algorithm for general application of the segmentation analysis and emphasize here that the segmentation analysis is more generally applicable to cyclic time series. We demonstrate the utility of the algorithm with specific results related to the comparison between satellite- and model-derived XCO2 seasonal cycles (2009–2012) for large bioregions across the globe. We found a seasonal amplitude gradient of 0.74–0.77&thinsp;ppm for every 10∘ of latitude in the satellite data, with similar gradients for rise and fall segments. This translates to a south–north seasonal amplitude gradient of 8&thinsp;ppm for XCO2, about half the gradient in seasonal amplitude based on surface site in situ CO2 data (∼19&thinsp;ppm). The latitudinal gradients in the period of the satellite-derived seasonal cycles were of opposing sign and magnitude (−9&thinsp;d per 10∘ latitude for fall segments and 10&thinsp;d per 10∘ latitude for rise segments) and suggest that a specific latitude (∼2∘&thinsp;N) exists that defines an inversion point for the period asymmetry. Before (after) the point of asymmetry inversion, the periods of rise segments are lesser (greater) than the periods of fall segments; only a single model could reproduce this emergent pattern. The asymmetry in amplitude and the period between rise and fall segments introduces a novel pattern in seasonal cycle analyses, but, while we show these emergent patterns exist in the data, we are still breaking ground in applying the information for science applications. Maybe the most useful application is that the segmentation analysis allowed us to decompose the model biases into their correlated parts of biases in amplitude, period and phase independently for rise and fall segments. We offer an extended discussion on how such information about model biases and the emergent patterns in satellite-derived seasonal cycles can be used to guide future inquiry and model development.</p

    Evaluation of simulated soil carbon dynamics in Arctic-Boreal ecosystems

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Huntzinger, D. N., Schaefer, K., Schwalm, C., Fisher, J. B., Hayes, D., Stofferahn, E., Carey, J., Michalak, A. M., Wei, Y., Jain, A. K., Kolus, H., Mao, J., Poulter, B., Shi, X., Tang, J., & Tian, H. Evaluation of simulated soil carbon dynamics in Arctic-Boreal ecosystems. Environmental Research Letters, 15(2), (2020): 025005, doi:10.1088/1748-9326/ab6784.Given the magnitude of soil carbon stocks in northern ecosystems, and the vulnerability of these stocks to climate warming, land surface models must accurately represent soil carbon dynamics in these regions. We evaluate soil carbon stocks and turnover rates, and the relationship between soil carbon loss with soil temperature and moisture, from an ensemble of eleven global land surface models. We focus on the region of NASA's Arctic-Boreal vulnerability experiment (ABoVE) in North America to inform data collection and model development efforts. Models exhibit an order of magnitude difference in estimates of current total soil carbon stocks, generally under- or overestimating the size of current soil carbon stocks by greater than 50 PgC. We find that a model's soil carbon stock at steady-state in 1901 is the prime driver of its soil carbon stock a hundred years later—overwhelming the effect of environmental forcing factors like climate. The greatest divergence between modeled and observed soil carbon stocks is in regions dominated by peat and permafrost soils, suggesting that models are failing to capture the frozen soil carbon dynamics of permafrost regions. Using a set of functional benchmarks to test the simulated relationship of soil respiration to both soil temperature and moisture, we find that although models capture the observed shape of the soil moisture response of respiration, almost half of the models examined show temperature sensitivities, or Q10 values, that are half of observed. Significantly, models that perform better against observational constraints of respiration or carbon stock size do not necessarily perform well in terms of their functional response to key climatic factors like changing temperature. This suggests that models may be arriving at the right result, but for the wrong reason. The results of this work can help to bridge the gap between data and models by both pointing to the need to constrain initial carbon pool sizes, as well as highlighting the importance of incorporating functional benchmarks into ongoing, mechanistic modeling activities such as those included in ABoVE.This work was supported by NASA'S Arctic Boreal Vulnerability Experiment (ABoVE; https://above.nasa.gov); NNN13D504T. Funding for the Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP; https://nacp.ornl.gov/MsTMIP.shtml) activity was provided through NASA ROSES Grant #NNX10AG01A. Data management support for preparing, documenting, and distributing model driver and output data was performed by the Modeling and Synthesis Thematic Data Center at Oak Ridge National Laboratory (MAST-DC; https://nacp.ornl.gov), with funding through NASA ROSES Grant #NNH10AN681. Finalized MsTMIP data products are archived at the ORNL DAAC (https://daac.ornl.gov). We also acknowledge the modeling groups that provided results to MsTMIP. The synthesis of site-level soil respiration, temperature, and moisture data reported in Carey et al 2016a, 2016b) was funded by the US Geological Survey (USGS) John Wesley Powell Center for Analysis and Synthesis Award G13AC00193. Additional support for that work was also provided by the USGS Land Carbon Program. JBF carried out the research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. California Institute of Technology. Government sponsorship acknowledged
    • …
    corecore