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Abstract. There is more useful information in the time series
of satellite-derived column-averaged carbon dioxide (XCO2)
than is typically characterized. Often, the entire time series
is treated at once without considering detailed features at
shorter timescales, such as nonstationary changes in signal
characteristics – amplitude, period and phase. In many in-
stances, signals are visually and analytically differentiable
from other portions in a time series. Each rise (increasing)
and fall (decreasing) segment in the seasonal cycle is visually
discernable in a graph of the time series. The rise and fall seg-
ments largely result from seasonal differences in terrestrial
ecosystem production, which means that the segment’s signal
characteristics can be used to establish observational bench-
marks because the signal characteristics are driven by similar
underlying processes. We developed an analytical segmenta-
tion algorithm to characterize the rise and fall segments in
XCO2 seasonal cycles. We present the algorithm for general
application of the segmentation analysis and emphasize here
that the segmentation analysis is more generally applicable
to cyclic time series.

We demonstrate the utility of the algorithm with spe-
cific results related to the comparison between satellite- and
model-derived XCO2 seasonal cycles (2009–2012) for large
bioregions across the globe. We found a seasonal ampli-
tude gradient of 0.74–0.77 ppm for every 10◦ of latitude
in the satellite data, with similar gradients for rise and fall
segments. This translates to a south–north seasonal ampli-
tude gradient of 8 ppm for XCO2, about half the gradient in
seasonal amplitude based on surface site in situ CO2 data
(∼ 19 ppm). The latitudinal gradients in the period of the

satellite-derived seasonal cycles were of opposing sign and
magnitude (−9 d per 10◦ latitude for fall segments and 10 d
per 10◦ latitude for rise segments) and suggest that a specific
latitude (∼ 2◦ N) exists that defines an inversion point for the
period asymmetry. Before (after) the point of asymmetry in-
version, the periods of rise segments are lesser (greater) than
the periods of fall segments; only a single model could re-
produce this emergent pattern. The asymmetry in amplitude
and the period between rise and fall segments introduces a
novel pattern in seasonal cycle analyses, but, while we show
these emergent patterns exist in the data, we are still breaking
ground in applying the information for science applications.
Maybe the most useful application is that the segmentation
analysis allowed us to decompose the model biases into their
correlated parts of biases in amplitude, period and phase in-
dependently for rise and fall segments. We offer an extended
discussion on how such information about model biases and
the emergent patterns in satellite-derived seasonal cycles can
be used to guide future inquiry and model development.

1 Introduction

Most of our understanding about atmospheric CO2 dynamics
has come from CO2 sampled by in situ flask samples or eddy
flux towers on the Earth’s surface (Ciais et al., 2014). While
these data streams have proved incredibly useful, the tran-
sient dynamics of fluxes simulated by global-scale terrestrial
models have only been compared to relatively few locations
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on Earth. In contrast to surface CO2 samples, which sample
CO2 concentrations in the planetary boundary layer, satellite
observations of CO2 are made by downward-looking Fourier
spectrometers from the top of the atmosphere and represent
an integrated estimate of CO2 concentrations in a full column
of atmosphere, hereafter “XCO2” (Wunch et al., 2011; Crisp
et al., 2012). Although fluxes from the surface have a large
influence on the total column CO2, the vertical and horizon-
tal transport of air masses in higher atmospheric layers, each
with different concentrations of CO2, also influence the CO2
concentrations in the total column (Belikov et al., 2017), in-
cluding that of the stratosphere (Saito et al., 2012).

The synoptic coverage and integrated nature of XCO2
means that surface fluxes from around the globe impart infor-
mation into the seasonal dynamics and interannual variability
of regional seasonal cycles, which is both a confounding and
useful property for evaluating large-scale models. The inte-
grated nature of the data also means that even a few years
of data will be sufficient to evaluate the simulated dynam-
ics of global-scale models. We propose that if models can
reasonably simulate the timing and magnitude of terrestrial
surface fluxes in all bioregions, then we would expect that
the simulated XCO2 would match reasonably well with the
seasonal dynamics from the benchmark satellite data. Such
demonstrated ability could strengthen confidence in regional-
to-global model simulations.

To gain insight into seasonal cycle dynamics of satel-
lite XCO2 and individual model behavior, we demonstrate
a novel approach to extract more information from the sea-
sonal cycle than is typically characterized. In evaluations of
model performance, traditional performance statistics (root-
mean-square error, correlation, standard deviation) are used
to quantify bias in phase and amplitude of the seasonal cy-
cle against a benchmark signal (Coupled Model Intercom-
parison Project Earth system models in Glecker et al., 2008;
Dynamic Global Vegetation Models, DGVMs, in Anav et al.,
2015). In almost all applications, however, the entire time se-
ries is treated at once without considering detailed features
at shorter timescales, such as nonstationary changes in am-
plitude, magnitude, period or phase (Fig. 1). We suggest that
traditional performance statistics be applied to categories of
unique patterns in the seasonal cycle and not to the entire
time series, thereby characterizing the error structure in a
manner that can relate temporal dynamics (amplitude, mag-
nitude, phase) with unique underlying processes.

We extend and apply a time series segmentation method
(Ehret and Zehe, 2011) to extract the rise and fall segments
in seasonal cycles of satellite-derived and simulated XCO2,
based on a suite of terrestrial ecosystem models. The advan-
tage of the segmentation approach is that it allows an error
structure to be accurately characterized by separately cal-
culating the errors in amplitude, period and phase for each
segment type (rise, fall). For example, in a graph of a mul-
tiyear seasonal cycle of XCO2 (Fig. 1), each increasing and
decreasing segment is visually discernable and analytically

differentiable from other portions in the seasonal cycle; here-
after, rise refers to increasing segments and fall refers to de-
creasing segments in a seasonal cycle. The rise and fall seg-
ments largely result from seasonal differences in the onset
and cessation of terrestrial ecosystem production (Keeling et
al., 1995), which means that a segment’s signal characteris-
tics (i.e., amplitude, period, phase) are likewise influenced by
different stages of terrestrial ecosystem activity. By segment-
ing the time series into similar component signals, we can
then test for differences in the signal characteristics of rise
and fall patterns and provide insight into a model’s ability
to recreate these features of the seasonal cycle over multiple
years.

Our first aim was to simply characterize the satellite-
derived XCO2 seasonal cycles in terms of rise- and fall-type
segment variation. Secondly, we evaluated if signal charac-
teristics and model biases differed or were correlated among
rise and fall segments, which would help provide information
in the missing parts of the satellite-based time series (i.e., at
high latitudes during boreal winter and in the tropics dur-
ing the wet season), which we demonstrate is possible. We
also evaluated if model biases between rise and fall segments
differed enough to provide information about the underlying
model representation of terrestrial dynamics, which we un-
derscore as possible, but discuss the limits for inference in
this regard. Lastly, we explored how a single modeled pro-
cess (land use and land cover change, LUC) manifests in the
different signal characteristics and biases in rise and fall seg-
ments. We offer discussion on how the segment-based model
biases and emergent patterns in satellite-derived seasonal cy-
cles can be used to guide future inquiry and model develop-
ment.

2 Methods

2.1 Satellite XCO2 data

Satellite observations of XCO2 were obtained from the
Greenhouse gases Observing SATellite (GOSAT; v.7.3). On-
board the satellite, a Fourier Transform spectrometer mea-
sures the thermal and near-infrared absorption spectra of the
constituent atmospheric gases within the footprint of obser-
vation (∼ 10 km). Satellite data were freely obtained and
analyzed only for 2009–2012 because they corresponded
to the overlapping timeframe of available simulation data.
The data were downloaded from NASA Goddard Earth Sci-
ences (GES) Data and Information Services Center (DISC)
online repository (https://oco2.gesdisc.eosdis.nasa.gov/data/
GOSAT_TANSO_Level2/ACOS_L2_Lite_FP.7.3/; last ac-
cess: 25 April 2018). We used the Level 2 Lite data prod-
ucts, which include only high-quality and bias-adjusted data
points, based on the Atmospheric CO2 Observations from
Space (ACOS) retrieval algorithm v.7.3 (Crisp et al., 2012;
O’Dell et al., 2012).
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Figure 1. Conceptual diagram for the segmentation analysis. (a) Interannual variation in seasonal cycle amplitudes (vertical, solid colored
lines) and periods (horizontal, dashed colored lines); such interannual variation may also differ among rise and fall segments. (b) A reference
cycle (black) and a modeled seasonal cycle (red) are compared using the root-mean-square error (RMSE), which is taken as the difference
in magnitude at the same exact time in reference and modeled seasonal cycles. In out-of-phase signals, the RMSE misrepresents bias. The
segmentation approach matches segments in the reference and modeled seasonal cycles, rise to rise and fall to fall, so that the errors in
magnitude and phase can be decomposed and directly represented (c).

Note that satellite data have uncertainties of their own
based on instrument noise, the version of retrieval algo-
rithm used to filter atmospheric effects and averaging kernels
(Yoshida et al., 2011; Lindqvist et al., 2015). We made the
assumption that averaging kernels have a minimal effect on
extracted seasonal cycles, and we did not apply the averag-
ing kernels to the simulation data in this study. A full quan-
tification of uncertainty in satellite-derived seasonal cycles is
beyond the scope of this study, but such an analysis could
be useful for benchmarking purposes, as models continue to
reduce large biases (� 1.0 ppm). Nevertheless, we make the
assumption that lower biases are generally indicative of bet-
ter model performance.

2.2 Simulated terrestrial fluxes from DGVMs

The net biome exchange (NBP) from the land to the atmo-
sphere was simulated by six terrestrial ecosystem models
(Table 1) that were part of the TRENDY model intercom-
parison project v.2 (Sitch et al., 2015, http://dgvm.ceh.ac.uk/,
last access: 24 April 2019). We use the atmospheric conven-
tion and make fluxes to the atmosphere positive and fluxes
to the land negative. We assumed that the primary modes
of seasonal variability in terrestrial NBP at large scales are
described by three terms: net ecosystem production (net pri-
mary production and heterotrophic respiration), fluxes from
fire and land use change (LUC). The protocol for the DGVM
intercomparison standardized the (i) forcing data – gridded
(0.5◦) climate data (air temperature, short- and long-wave ra-

diation, cloud cover, relative humidity, and precipitation) and
global annual mean CO2 – and the (ii) initial conditions for
time-varying simulations for the past century (1860–2012).
We used simulated NBP for two sets of model simulations,
one where land use (natural vegetation, crop and pasture frac-
tional cover) is fixed at values from the year 1860 (“S2” sce-
nario described in Sitch et al., 2015) and another where land
use change is simulated according to the HistorY Database
of the global Environment (HYDE v3.1; Goldewijk et al.,
2011) (“S3” scenario as described in Sitch et al., 2015); both
simulation types were forced with time-varying climate and
CO2.

2.3 Fossil fuel and ocean fluxes

The modes of variability (trend, seasonality, intra-annual and
interannual variability) in XCO2 are also influenced by fluxes
from oceanic exchange, fossil fuel consumption and cement
production. We used a simplified model of oceanic CO2 ex-
changes from Takahashi et al. (2009) and monthly mean fos-
sil fuel emissions from the European Commission’s Emis-
sions Database for Global Atmospheric Research (EDGAR
v.4.2) based on country-level reporting and emissions fac-
tors and the Fossil Fuel Data Assimilation System (http:
//edgar.jrc.ec.europa.eu/, last access: 24 April 2019).
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Table 1. Terrestrial ecosystem models from the TRENDY v.2 model intercomparison used to simulate terrestrial net ecosystem exchange.
All models simulate carbon (C) cycles, whereas some models also include nitrogen (N) cycles, identified as C–N coupled models.

Spatial Land Fire C–N
Model Abbrev. resolution surface simulation coupled Source

model cycle

Community Land Model v.4.5 CLM 2.5× 2.5 Yes Yes Yes Lawrence et al.
(2011)

Lund-Potsdam-Jena LPJ 0.5× 0.5 No Yes No Sitch et al. (2003)

Land surface processes and
exchanges

LPX 1.0× 1.0 No Yes Yes Prentice et al. (2011)

ORganizing Carbon and Hydrol-
ogy in Dynamic EcosystEms

ORCHIDEE 3.74× 2.5 Yes Yes No Krinner et al. (2005)

ORCHIDEE with coupled C–N
cycling

OCN 1.0× 1.0 Yes Yes Yes Zaehle and Friend
(2010)

Vegetation Integrative SImulator
for Trace gases

VISIT 0.5× 0.5 No Yes Yes Kato et al. (2013)

2.4 Simulated XCO2 using an atmospheric model

Simulations of atmospheric CO2 were conducted for the
period of 2009–2012 using the land, ocean and fossil
fuel fluxes. We used the Center for Climate Systems Re-
search/National Institute for Environmental Studies/Frontier
Research Center for Global Change (CCSR/NIES/FRCGC)
chemistry transport model (ACTM) based on an atmospheric
general circulation model (Patra et al., 2009). The ACTM
was run at a horizontal resolution of T106 (∼ 1.125◦×
1.125◦) and 32 sigma-pressure vertical levels. The simu-
lated XCO2 values were obtained by taking the sum of the
pressure-weighted CO2 concentrations over all vertical lay-
ers, equivalent to the column-averaged observations. We then
used “collocation” sampling of the ACTM XCO2 data to
match the location and timeframe (13:00 local time) of ob-
servations: ±5 d to account for sub-weekly transport errors
(i.e., by averaging; Guerlet et al., 2013). We obtained the
simulated XCO2 for each component flux (land, fossil fuel,
ocean) and finally summed the components to get the XCO2
used in bias evaluations.

2.5 Extraction of XCO2 seasonal cycles

We first estimated the mean of daily XCO2 values by av-
eraging gridded values within each of the 11 TransCom re-
gions (Fig. 2) for both the observed and modeled XCO2. This
procedure was as straightforward as written above, and the
accompanying computer code (software: R) is provided in
the Supplement. We then applied a digital filtering algorithm
(ccgcrv, by Thoning et al., 1989; https://www.esrl.noaa.gov/
gmd/ccgg/mbl/crvfit/crvfit.html, last access: 24 April 2019)
to the mean time series to extract the long-term trends
and seasonal cycles, fitted as a two-term polynomial (linear

growth rate was used because the time series spanned only 3
years) and a four-term harmonic function to account to sea-
sonal asymmetry. Temporal data gaps were linearly interpo-
lated by the algorithm. After subtracting the long-term trend
and seasonal cycle, the ccgcrv algorithm filters the residu-
als in the frequency domain using a Fast Fourier Transform
(FFT) algorithm to retain short- and long-term interannual
variation (additional details in Nakazawa et al., 1997; Pickers
and Manning, 2015). The cutoff for the short-term filter was
set at the recommended value of 80 d (Thoning et al., 1989).
The short-term cutoff of 80 d retains data variations that
are evident or maintained for the timescale of 3–4 months
(4.56 cycles yr−1). The cutoff for the long-term filter was set
to a large number (3000), which is longer than the number
of days in our time series (365 d yr−1

× 3 years= 1095 d) be-
cause, with such a short time series, we needed to force the
estimation of a linear trend with no interannual variation;
otherwise, the algorithm would be too sensitive and derive
variation in the trend without practical justification. For all
analyses in the following, we combined the seasonal cycle
with the digitally filtered short-term variation and used the
derived data points along the smoothed seasonal cycle curves
for analysis.

2.6 Technical description of algorithm: segmentation
of seasonal cycles

The purpose of this section is to describe the technical al-
gorithms used in the analysis. These algorithms are based
on concepts put forth by Ehret and Zehe (2011), translated
herein into the R computing language (R Development Core
Team, 2008). Where Ehret and Zehe (2011) focused on sin-
gle hydrological events, we modify and restructure the al-
gorithm to accommodate much longer nonstationary cyclic
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Figure 2. TransCom region map.

time series for general application to seasonal cycle analy-
ses. An R package for the segmentation algorithm is freely
available at the GitHub repository (https://github.com/lcalle/
segmentTS, last access: 24 April 2019) . A permanent ver-
sion of the code is available in the Dryad Digital Reposi-
tory (https://doi.org/10.5061/dryad.vk8ms62). The computer
code is annotated and provides data used in this study with
demonstrations for applying the algorithm to remove local
minima or maxima and the categorization of seasonal cycle
segments.

2.6.1 Categorizing segments and isolating seasonal rise
and fall cycles

We first determine the first derivatives numerically. The
ccgcrv signal decomposition algorithm outputs a daily time
series in the form of a multidimensional array, but we focus
on a subset of the array – the two-dimensional rectangular
matrix representing points along the detrended seasonal cy-
cle:

B=

 b1,1 b1,2 b1,3
...

...
...

bn,1 bn,2 bn,3

 , (1)

where the first column is the row index, the second col-
umn is made up of dates, the third column is the detrended
XCO2 ppm with the short-term variation added back in and
the rows are the triplets of the index: time in the x direction
and magnitude (XCO2 ppm) in the y direction.

We can numerically determine the first derivative in the
y direction at each point via differencing:

∇bi,2 = bi,2− bi−1,2. (2)

We then classify each row in first column (bi,2. . .bn,2) into
one of the following categories below and expand B to an
n×4 matrix to store the classified values. The main objective
is to classify the endpoints (trough, peak) of the rise and fall
segments:

∀i ∈ {1. . .n} , (3)

bi,4 =


Trough, (∇bi,2 < 0)∧ (∇bi+1,2 > 0)
Rise, (∇bi,2 < 0)∧ (∇ bi+1,2 < 0)
Fall, (∇bi,2 > 0)∧ (∇,bi+1,2 > 0)
Peak, (∇bi,2 > 0)∧ (∇bi+1,2 < 0)
Null, otherwise

.

We then take the subset of endpoints (S) in the classified ma-
trix B,

S ⊂ B=
{
B|bi,3 : Trough, Peak, (4)

where S retains the dimensions of the B. A unique segment
(s) is defined as a set of two consecutive endpoints (rows)
in S that alternate in their classification of trough or peak,
meeting the following condition:

s ⊂ S =
{
S

∣∣∣(Si,4 : Trough ∧Si+1,4 : Peak) (5)

∨ (Si : Peak ∧Si+1,4 : Trough).

We identify local minima and maxima that are deviations in
otherwise longer (seasonal) and more general rise and fall
patterns based on two criteria below, and then reclassify the
segments based on the class of the segment with the largest
amplitude. The amplitude of a segment (as) is defined as fol-
lows:

as =
∣∣s1,2− s2,2

∣∣ , (6)
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where s1,2 is the first endpoint in the second column
(XCO2 ppm), either a trough or a peak, and s2,2 is the sec-
ond endpoint for the specific segment, where, by definition,
the first endpoint must be classified (s1,4) as one of peaks
or troughs and must not have the same classification as the
second endpoint (s2,4).

The first criterion sets a minimum threshold for the ampli-
tudes, redefining the set of endpoints defining the segments
as follows:

s∗ ⊂ s = {s|as > minimum threshold . (7)

Segments that represent local minima or maxima that are not
of interest to the user can be identified through a comparison
of amplitudes of consecutive segments, dropping the segment
with the lowest amplitude as follows:

s∗
′

⊂ s∗ =
{
s∗|s∗ 6=min(as−1,as,as+1) . (8)

This procedure results in a new subset of segment endpoints
(s∗
′

) with consecutive elements that have a similar classifica-
tion (e.g., s∗

′

1,4 := Peak and also s∗
′

2,4 := Peak), which needs
to be rectified. We keep the endpoints with the lowest trough
value and the largest peak value:

s[t]∗ ⊂

{
s[t]1,2 s[t + 1]1,2
s[t]2,2 s[t + 1]2,2

}
= (9)

s[t]∗1,2 =


min

(
s[t]1,2, s[t + 1]1,2

)
,

s[t]1,4 := Trough ∧ s[t + 1]1,4 := Trough

max
(
s[t]1,2, s[t + 1]1,2

)
,

s[t]1,4 := Peak ∧ s[t + 1]1,4 := Peak

s[t]∗2,2 =


min

(
s[t]2,2, s[t + 1]2,2

)
,

s[t]2,4 := Trough ∧ s[t + 1]2,4 := Trough

max
(
s[t]2,2, s[t + 1]2,2

)
,

s[t]2,4 := Peak ∧ s[t + 1]2,4 := Peak


,

where s[t] is a unique segment in the set of s segments, s[t+
1] is the following consecutive segment, s[.]1,2 and s[.]2,2 are
the segment first and last endpoints, respectively, and s[t]∗ is
the updated segment with new endpoints s[t]∗1,2 and s[t]∗2,2,
while segments s[t] and s[t+1] have been removed from the
set of segments (s).

A (subjective) limit can also be set to exclude or include
segments based on temporal proximity. For example, consec-
utive minima (minima–maxima–minima) should not be con-
sidered local minima if separated by 365 d; these are proba-
bly real local minima driven by processes unique to different
seasons. By contrast, local minima separated by 60 d may
represent signals within the overall seasonal rise and fall pat-
tern (e.g., due to fire). For this study, we are more interested
in assessing the general seasonal patterns. We therefore esti-
mate the temporal distance, in “days” (Ds), between the first
endpoints of consecutive segments and evaluate the condition

as follows:

Ds = s[t + 1]1,3− s[t]1,3, (10)
given s[t]1,4 ∧ s[t]1,4 are of the same class (Trough, Peak),

s∗ ⊂ s = {s|Ds > minimum threshold, (11)

where s[.]1,3 is the endpoint date in the x direction, and the
minimum threshold for distance between endpoints is set at
a conservative 250 d (∼ 8 months), ensuring that only the
main rise and fall patterns within a given year are captured.
This conditional evaluation also results in a new subset of
segments (s∗) with consecutive elements that have a similar
classification, as above, but Eq. (9) can be reapplied to select
the endpoints, which represent general rise and fall patterns.

Additional criteria can be applied to automate the removal
of local minima and maxima that are not relevant to the user,
but we caution that visual inspection of the signal is impor-
tant to avoid unwanted reclassification of segments in the
time series.

2.6.2 Human-assisted pattern recognition via visual
inspection

The procedure outline in Sect. 2.6.1 is applied to both the
reference (R) and modeled (M) seasonal cycle time series.
In the best of cases, the procedure would result in matrices
for R and M , each with an equal number of segments and
the same sequence of endpoint classes (trough–peak–trough–
peak, etc.). In practice, however, the number and sequence of
segments inM will not always equal the number or sequence
of segments in R. When variability in the modeled seasonal
cycle results in many local minima (maxima), and therefore
many short rise (fall) segments, there can be a mismatch be-
tween the indices of segments, wherein smaller and shorter
segments in M are matched to much larger and longer seg-
ments in R; this is simply an artifact from the automation of
the procedure outlined previously. Although we have imple-
mented automated procedures in the algorithm that reconcile
these types of mismatches, we found that it was consider-
ably quicker to (i) conduct a “blind” run of the algorithm on
the data, (ii) visually inspect the automated graphical plots
of the seasonal cycles for mismatching segments (Fig. S1 in
the Supplement), (iii) identify the index of the mismatching
endpoints inM and then finally (iv) rerun the algorithm spec-
ifying the index of the endpoint in M for removal.

2.6.3 Segment signal characteristics and error statistics

The amplitude (Eq. 6) and period (p in days) for all segments
are first characterized, with the period defined as follows:

ps = sn− s0, (12)
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where sn and s0 are the end and start dates of a segment,
respectively. Then, for each segment in M and R, a comple-
mentary vector Mx and Rx is created in the x direction with
a fixed number of equally spaced dates,

x = (x1. . .xk) . (13)

Each element in Mx corresponds, by index, to an element in
Rx , such that a matching pair exists. Similarly, the comple-
mentary vectors My and Ry are created in the y direction,
with the length of the vector matching the length of the vec-
tor in the x direction (k). For each element in My and Ry , we
perform a linear interpolation of the values of XCO2 ppm in
B (b.,2) for the indices given by the dates in Mx and Rx ; for-
tunately, the linear interpolation is automated by the approx
function in R, which makes this procedural step straightfor-
ward. The end result is, for every segment in M and R, four
vectors of equal length in Mx , My and Rx , Ry , with the
timing of the data and values of XCO2 ppm that follow the
corresponding seasonal cycles in B. We can then decompose
the corresponding errors in phase and magnitude along the
time series.

timing error=Mx −Rx (14)

magnitude error=My −Ry (15)

Although in this paper we focus only on errors in amplitude,
period and phasing of the segments, the time series of errors
in timing and magnitude are an additional level of detail in
the error structure that is evaluated by the segmentation algo-
rithm.

2.7 Statistical summaries

For each of the rise and fall segments within a region, we
summarized the characteristics by averaging the amplitude
(ppm), period (days) and phase, which we estimated in two
ways based on the day of year for the first and last end-
point of the corresponding segment (DOY start, DOY end,
respectively). For model biases, we used the total sum of the
component tracers (land and fossil fuel and ocean) and we
summarized model biases as the region average of segment-
to-segment differences between model and observation. Al-
though we aggregate the biases among segment types, and
therefore lose information, we do this to demonstrate that
there are distinct general patterns in the rise and fall seg-
ments, regardless of region. Of course, one might be more
interested in one bioregion over another, and while this is in-
deed possible and suggested, such analysis is not the intent
of this paper.

The latitudinal variation in amplitude and period length
for rise and fall segments was evaluated by comparing the
regionally averaged metrics against the average latitude of

each TransCom region. We sought to evaluate a model’s abil-
ity to reproduce the north to south gradient in seasonal cycle
characteristics. We also use data from in situ CO2 flask sam-
ples for 2005–2015 (NOAA/ESRL/GMD CCGG cooperative
air sampling network; https://www.esrl.noaa.gov/gmd/ccgg/
flask.php, last access: 1 May 2018) as a check for evaluating
latitudinal variations in surface site seasonal amplitudes. Sur-
face sites were selected if they had a minimum of 5 years of
data between 2005 and 2015, with at least one flask sample
per month. The peak–trough amplitude was then taken from
monthly averaged data. Linear correlations were deemed sta-
tistically significant at levels of p = 0.05.

The amplitude and period length asymmetries between
rise and fall segments were calculated as in the follow-
ing example. Given a sequence of data with segments of
type {Fall_1, Rise_1, Fall_2, Rise_2}, representing sea-
sonal cycles over 2 years, three asymmetries in amplitude
and period length would be calculated for the sequence of
segments, as (i) Fall_1−Rise_1, (ii) Fall_2−Rise_1 and
(iii) Fall_2−Rise_2. The asymmetries are referenced to fall
segments such that, for example, negative asymmetries mean
that the amplitude (or period length) is greater in the rise seg-
ment. The reason we calculated asymmetries between seg-
ments immediately before and after the fall segments is be-
cause we assumed that there is some degree of autocorrela-
tion in the relational values that is both real and could pro-
vide useful information, but the underlying causal mecha-
nisms are speculative at this point.

2.8 Application of approach

We applied the approach to evaluate the effect of LUC on
XCO2 by using the segment characteristics setting the S2
scenario as the reference time series and then following pro-
cedures outlined in Sect. 2.6 to match corresponding rise and
fall segments in the S3 and S2 simulations. We then calcu-
lated the difference in the amplitude, period and phase be-
tween matching segments, hereafter defined as the “LUC ef-
fect”. To evaluate the relative influence of the LUC effect
on changes in amplitude, period and phase, we transformed
the LUC effect to percentages by (a) dividing the LUC ef-
fect in amplitude by region-specific average amplitudes and
(b) dividing the LUC effect in the period length and phase
(DOY start, DOY end) by the region-specific average period
lengths. We then pooled the absolute values of the standard-
ized LUC effects for all regions by model; the absolute val-
ues of the LUC effect were used because we were more in-
terested in any significant change, rather than a directional
change in the metric values. We conducted an analysis of
variance to test for significant differences among models and
types of LUC effects (amplitude, period and phase), in terms
of the percent LUC effect, also setting significant differences
at p = 0.05. In this manner, we were able to determine the
relative importance of the LUC effect by these metrics and
compare amongst the models.
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Figure 3. Detrended XCO2 seasonal cycles by TransCom region. Simulated seasonal cycles are the sum of transported fluxes from DGVM,
fossil fuel and ocean, but only the DGVM model name is listed.

3 Results

3.1 Satellite coverage and XCO2 seasonal cycles

The satellite data coverage had sufficient temporal density to
extract smooth seasonal cycles (Fig. 3), except during boreal
winter at high latitudes (> 50◦ N) and during the wet sea-
son in tropical Asia, where there was clear evidence of linear
interpolation over large data gaps (Figs. S2–S4). We had to
exclude North America Boreal and South America Tropical
regions from all analyses because the data were too sparse
and seasonal cycles could not be derived. The mean number
of satellite retrievals per day in 5◦ bins was greater than 1
when averaged over a season, but the spatial distribution of
the retrievals by month (Figs. S2–S4) showed that only por-
tions of the TransCom regions were being represented with
satellite observations. The lack of a complete representative
sample of satellite observations in a region suggests that the
derived seasonal cycle will be biased towards the XCO2 ob-
servations in those subregions with greater coverage. We take
this finding as a caveat but also demonstrate below that the
derived seasonal cycles are a good representation of the gen-
eral seasonal dynamics in the data.

There were noticeable deviations (local minimums) from
otherwise consistent rise and fall patterns during a season
(for example in North Africa in Fig. 3). We compared the
seasonal cycles derived from DGVM XCO2 collocated with
GOSAT retrievals against DGVM seasonal cycles using all
simulated XCO2 and complete coverage (no collocation). For
the single DGVM studied in this side analysis, the local devi-
ations were still evident in the seasonal cycles that used data

with complete coverage (Fig. S5). We believe that these de-
viations are not artifacts of the spatial distribution of satellite
retrievals but instead are true patterns in the XCO2 seasonal
cycle. However, the collocation sampling did appear to have
a greater effect on the amplitudes and periods in Southern
Hemisphere regions, whereas the effect of collocation sam-
pling was less influential in Northern Hemisphere regions.

The magnitude of the GOSAT seasonal cycle residual er-
ror, averaged over all regions, was 0.15± 1.02 ppm, which
was not a small fraction relative to the average amplitudes
when taking into account the standard deviation. However,
the residuals were normally and randomly distributed around
zero (Fig. S6), which we took to suggest that there was no
systematic bias, that the daily spatial variation in data cov-
erage averaged out and that what we derived was a realistic
estimate of seasonal variation in XCO2.

3.2 Latitudinal variation in XCO2 seasonal cycle
amplitudes

Seasonal amplitude varied predictably with latitude (Fig. 4).
Latitude explained between 82 % and 84 % of the variation
in seasonal amplitudes in GOSAT, with the range taken from
linear models of rise and fall segments (Fig. 4). There was an
increase in amplitude of 0.74± 0.13 ppm (µ±SE, standard
error) for rise segments and 0.77±0.13 ppm for fall segments
for every 10◦ latitude for GOSAT. Whereas the XCO2 ampli-
tudes exhibited a linear relationship with latitude, in situ flask
samples of CO2 exhibited a log-linear relationship with lati-
tude (Fig. 5;R2

= 0.90, df= 45, p < 0.001), which indicates
larger amplitude gradients at higher latitudes than at lower

Atmos. Meas. Tech., 12, 2611–2629, 2019 www.atmos-meas-tech.net/12/2611/2019/



L. Calle et al.: Characterizing rise and fall segments in seasonal cycles 2619

Figure 4. Latitudinal variation in amplitude and period in rise and fall segments among TransCom regions, using the average latitude for
each region. Linear regressions are shown when significant (p < 0.05). Regression statistics and equation are only given for GOSAT.

latitudes. The difference results in a latitudinal range (Equa-
tor to 70◦ N) in seasonal amplitude of ∼ 7 ppm for XCO2
(taken as 70◦×[0.077+1.95×0.013], as the largest possible
amplitude gradient in XCO2; µ+ 1.95×SE) and ∼ 17 ppm
for surface CO2. The dampened gradient in XCO2 ampli-
tude suggests substantial north–south atmospheric mixing,
which is consistent with a previous study on the meridional
vs. zonal contribution to XCO2 via atmospheric transport
(Keppel-Aleks et al., 2012). In addition, the in situ sampling
stations are located in such a way that they sample the “back-
ground” atmosphere, which reduces the influence of local to
regional terrestrial fluxes, and instead they provide seasonal
cycles representative of hemispheric and continental scales.
The contrast between the latitudinal gradient in amplitude
between XCO2 in this study and in situ surface samples may
therefore be even greater than reported here (Olsen and Ran-
derson, 2004; Sweeney et al., 2015).

Only LPX was able to simulate the GOSAT-derived latitu-
dinal gradient (slope) in amplitude, but, even in this model,
the magnitudes of the amplitudes were consistently lower
than GOSAT by ∼ 1.5 ppm (Fig. 4). ORCHIDEE simulated
the latitudinal gradient in amplitude reasonably well and

CLM simulated a marginally stronger north–south gradient,
whereas the gradient was much weaker in two models (OCN,
VISIT) and there was no statistically detectable amplitude
gradient in LPJ. The evidently enhanced meridional mix-
ing of total column CO2 complicates an interpretation of
the finding that most models simulated a weaker gradient in
XCO2 seasonal amplitude (Fig. 4). It makes it difficult to de-
termine why models do not reproduce the latitudinal gradient
in amplitude very well. For example, are the magnitudes of
the fluxes in certain regions too low or too high, such that
they offset the seasonal amplitudes in the region of interest
after atmospheric transport? We offer suggestions in the Dis-
cussion that might help answer these questions.

3.3 Latitudinal variation in XCO2 seasonal cycle
period

The period lengths of GOSAT XCO2 seasonal cycles also
varied predictably with latitude (Fig. 5), and there was no
significant difference in the magnitude of the latitudinal gra-
dients between rise and fall segments, although the direction
of the gradient was positive for rise segments and negative for
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Figure 5. Latitudinal variation in the amplitude for detrended in
situ surface CO2 samples. Data are the average of peak–trough am-
plitudes for 2005–2015, only including sites with a minimum of
5 years of data. Points are labeled according to the three-letter code
of the sampling station. The South Pole (spo), Mauna Loa (mlo)
and Barrow Island (brw) sites are highlighted in red for reference,
as they are commonly referenced in literature. The latitudinal range
in surface site CO2 seasonal amplitudes (∼ 19 ppm) is more than 2
times the latitudinal range in seasonal amplitudes of XCO2.

fall segments (Fig. 4). Latitude explained between 67 % and
73 % of the latitudinal variation in period lengths of GOSAT
seasonal cycles. From south to north, the period lengths of
rise segments increased by 10 d per 10◦ latitude for GOSAT.
From south to north, the period lengths of fall segments had
negative gradient and decreased by −9 d per 10◦ latitude for
GOSAT. The opposite gradient in the period lengths of rise
and fall segments implies that around 2◦ N the periods of rise
and fall segments are of equal duration. North of this point of
inversion in asymmetry, the period lengths of rise segments
are greater than in fall segments, with an increasing asym-
metry as latitude increases. We hypothesize that the latitude
at the point of inversion of period asymmetry is a character-
istic indicator of global atmospheric dynamics and biosphere
productivity. Our rationale is that if (i) the primary driver
of the period of drawdown (fall) or release (rise) in XCO2
seasonal cycles is the terrestrial biosphere, and (ii) DGVMs
themselves simulate the terrestrial biosphere, then variation
in the simulated point of inversion of asymmetry by differ-
ent DGVMs suggests a strong influence of biosphere activity
on this emergent pattern. The most obvious driver affecting
the period is plant phenology. Furthermore, we already know
that seasonal cycle in XCO2 is dominated by flux seasonality
in land biosphere, while ocean and fossil fuel emission sea-
sonality plays only a secondary role. Nevertheless, a north or
south shift in the latitude of inversion (i.e., 2◦ N) would indi-
cate that long-range transport of atmospheric signals, such

as the poleward transport of southerly signals (Parazoo et
al., 2016), has changed substantially. In which case, the rel-
ative contribution of long-range signals from southerly loca-
tions to seasonal cycle anomalies (in phase or amplitude) in
northerly locations might be greater or lesser than expected.
As of yet, however, it is unclear if this point of inversion is
relatively stable over time or if, instead, the point shifts in lat-
itude among years or decades depending on the relative influ-
ence of source–sink dynamics in biospheres in the Northern
Hemisphere and Southern Hemisphere.

Most models correctly simulated the satellite-derived lat-
itudinal gradient in the period, but LPJ and VISIT did not
simulate statistically significant gradients in either rise or fall
segments, and LPX could only reproduce the gradient for rise
segments but not for fall segments (Fig. 4). For CLM, OCN
and ORCHIDEE, the simulated gradients were statistically
similar to GOSAT, although the absolute period lengths dif-
fered by up to 25 d. The latitudinal gradient in the period
of XCO2 seasonal cycles is emergent from the underlying
timing and duration of biosphere productivity, and, as such,
it serves as a high-level constraint on simulated dynamics.
It may therefore be possible to add this emergent pattern as
a benchmark to evaluate models that attempt to reproduce
more direct indicators of biosphere activity, such as seasonal
patterns in leaf area (Richardson et al., 2012) or primary pro-
duction (Forkel et al., 2014).

3.4 GOSAT asymmetries in period and amplitude

The period asymmetry between rise and fall segments (Ta-
ble 2) is clearer when comparing the periods of consecu-
tive rise and fall segments (Fig. 6), taking the fall segment
as reference, as described in Sect. 2.7. The period asym-
metries were in the same direction except for the Africa
Northern, Africa Southern and South America Temperate re-
gions (Fig. 6a). The asymmetries exhibit stable patterns of
consistent direction within many regions, and they also dis-
play quite a bit of interannual variation in the magnitude
(or direction in some cases) of the asymmetries themselves
(Fig. 6a and b). For example, the standard deviation in pe-
riod asymmetry averaged 11 % of the region-averaged peri-
ods for GOSAT seasonal cycles, and it was greatest for the
Africa Southern region (42 %). For context, a 10 % change
amounts to a change in period asymmetry of 5–29 d and as
much as 73 d in the Africa Southern regions, which is cer-
tainly a remarkable change in the atmospheric signal. The
period asymmetries can provide insight into the underlying
terrestrial dynamics, for example, from interannual variation
in the duration of the carbon uptake period (Xia et al., 2015;
Fu et al., 2017), but it is yet unclear how changes in carbon
uptake period manifest to affect these patterns of asymmetry.
Furthermore, one DGVM (ORCHIDEE) was able to simulate
period asymmetries, consistent in direction, with that of the
GOSAT record when using collocation sampling. However,
the magnitude of the period asymmetry for ORCHIDEE was
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Figure 6. Period asymmetries (a) and amplitude asymmetries (b) in GOSAT XCO2 seasonal cycles. The bars represent differences in
amplitude or period for consecutive fall (F) and rise (R) segments, taking the fall segment as reference. For example, if the time series
follows the sequence F1, R1, F2, R2, F3, R3 (i.e., three seasonal cycles), then the difference between the first segment (F1) and the second
segment (R2) is calculated as “F1–R2”; a zero value would indicate that the metrics (amplitude or period) were equal, whereas an asymmetry
would be indicated by a positive (F1>R2) or negative (F1<R2) value. By definition, consecutive segments cannot be categorized as F–F or
R–R. Asymmetry statistics are not traditional summaries, but, nevertheless, they are characteristic and, in some regions, persistent patterns
of the seasonal cycle that are undoubtedly influenced by biosphere activity.

about half that of GOSAT, but it does suggest that the surface
fluxes from this DGVM were more realistic in timing and
magnitude. All other models had greater interannual varia-
tion in the direction of the asymmetry, with no other model
reproducing the direction of asymmetry in all regions.

The amplitude asymmetries between consecutive rise and
fall segments were more variable in the direction of the asym-
metry for GOSAT (Fig. 6b). There was no consistent pattern
in the direction or magnitude of the amplitude asymmetries
within or among regions, but we did not investigate if there
were annual patterns that were consistent among all regions.
No model successfully reproduced the direction of asymme-
try in amplitude across all regions in all years. As of yet, the
relevance of interannual variation in the asymmetries is spec-
ulative, but we do know that such variation is not simply due
to data coverage (Fig. S5) so there may be more insightful
information in the signal.

3.5 Correlated biases between rise and fall segments

The correlations of model biases differed more between the
Northern Hemisphere and Southern Hemisphere (NH and
SH, respectively) than among regions, so we present the fol-
lowing analyses not by region but by NH and SH. The NH

regions were comprised of Africa Northern, Europe, Eurasia
Temperate, North America Temperate; the SH regions were
comprised of Africa Southern, Australia and South America
Temperate. These analyses required data on both rise and fall
segments, which eliminated the Asia Tropical and Eurasia
Boreal regions from these analyses.

Among rise and fall segments and among all models and
regions, the model biases in amplitude were nearly per-
fectly correlated (NH, R2

= 0.99, df= 28, t = 64.63, p <
0.001; SH,R2

= 0.99, df= 16, t = 65.02, p < 0.001; Fig. 7a
and e). Other than ORCHIDEE and CLM, which exhibited
the smallest amplitude biases, the other models all had am-
plitudes that were too low. In the SH, there was a similar
pattern of negative amplitude biases (Fig. 7e), with the ex-
ception of CLM, which simulated amplitudes that were too
large in two of three SH regions. The strong correlations sug-
gest that knowing the amplitude biases in one part of the sea-
sonal cycle is sufficient to gain information about amplitudes
in the missing part of the seasonal cycle. This might be par-
ticularly useful for constraining estimates of XCO2 seasonal
cycle patterns during timeframes that have poor satellite cov-
erage (boreal winter, tropical wet season). Furthermore, it is
revealing that models, which simulate amplitudes that are too
low, do so almost equally for both rise and fall segments,
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Table 2. Signal characteristics for rise and fall segments of the
GOSAT-derived XCO2 seasonal cycles (2009–2012) by TransCom
region. The timeframe of one rise plus one fall segment approxi-
mately equates to 1 year. North America Boreal and South Amer-
ica Tropical regions were excluded for lacking the observations re-
quired to derive signals for rise or fall segments.

Period (days) Amplitude (ppm)

Region Segment Fall Rise Fall Rise

Africa Northern 1, 2 118 241 5.4 6.1
3, 4 130 229 5.5 5.2
5, 6 135 232 6.0 5.8

7 135 NA 5.7 NA

Africa Southern 1, 2 174 216 2.5 3.0
3, 4 131 131 4.0 3.6
5, 6 218 147 3.2 3.0

Asia Tropical 1, 2 NA 194 NA 6.4
3, 4 NA 200 NA 7.5
5, 6 NA 190 NA 7.0

Australia 1, 2 140 225 2.0 1.2
3, 4 136 209 2.0 2.5
5, 6 155 228 2.4 2.4

Europe∗ 2, 1 115 236 6.8 8.0
3, 4 131 239 7.9 6.4
5, 6 132 244 6.1 7.4

Eurasia 2, 1 109 248 6.2 7.1
Temperate∗ 3, 4 108 255 7.2 6.4

5, 6 118 253 5.7 6.5

Eurasia Boreal 1, 2 102 NA 10.9 NA
3, 4 100 NA 11.7 NA
5, 6 104 NA 11.2 NA

North America 1, 2 129 235 6.4 6.8
Temperate 3, 4 126 243 5.6 5.4

5, 6 127 233 6.0 5.3
7 129 NA 5.6 NA

South America 1, 2 232 91 2.1 2.0
Temperate 3, 4 238 137 2.2 2.4

5, 6 234 154 2.9 2.6
∗ The first differentiable segment is a rise segment, starting approximately ∼ 100+ d
after the first segment in other regions because the initial drawdown (fall segment) in
the region is a partial or incomplete segment. NA indicates that data are not available.

which is suggestive of a systematic bias in the sensitivity of
the models to seasonal changes in climate. Such systematic
biases can be due to simulated fluxes that are overall lower
in magnitude or due to a pattern of spatiotemporal fluxes that
end up offsetting or canceling each other in the atmospheric
domain, but we cannot definitively attribute the bias of indi-
vidual models to one of these possible causes yet.

The average period biases of rise and fall segments were
also strongly correlated, with a greater strength of correla-
tion in the NH (R2

= 0.77, df= 22, t =−8.53, p < 0.001)
than in the SH (R2

= 0.82, df= 21, t =−9.87, p < 0.001).

In the NH, almost all models simulated periods that were too
short in rise segments and too long in fall segments in ap-
proximately equal and opposing amounts (Fig. 7b). In the
SH, the period biases spanned both positive and negative val-
ues for both of the fall and rise segments but also in approx-
imately equal and opposing amounts of bias (Fig. 7f). There
were only a few data points where the periods within a re-
gion were either biased (i) too short for rise segments and
also too short for fall segments or (ii) where the rise segment
was biased too long and the fall segment was also biased too
long. These patterns are suggestive of underlying constraints
that compensate for biases in periods, such that situation (i)
and (ii) rarely occur. Such constraints are likely associated
with the underlying drivers of the period of rise and fall seg-
ments. For instance, models that simulate growing seasons
that are too long will likely simulate fall segment periods that
are also too long, and, as a consequence, the dormant sea-
son will be shortened, as will the periods of associated rise
segments. Within a given model, the magnitude of compen-
sating biases varied by region, so it is possible that biases in
biosphere activity varied similarly by region. To incorporate
such insights will require direct manipulation of the phenol-
ogy represented by models, but improving the emergent pat-
terns in the period to better match the satellite-derived XCO2
seasonal cycles will bolster confidence in the model’s abil-
ity to represent both fine-scale dynamics and the emergent
large-scale atmospheric patterns.

3.6 Application of approach: LUC effects on
amplitude, period and phase metrics were
nontrivial

We describe the LUC effect as the percent change in the rise
and fall segment amplitude, period and phase (DOY start,
DOY end) when LUC processes are included in model sim-
ulations, relative to seasonal cycle metrics when LUC was
not included in simulations. Among all models and rise and
fall segments, the average LUC effect was largest on ampli-
tude (mean 13.4 % or 0.37 ppm), but there were also nontriv-
ial changes in the period (7.2 % or 13.2 d) and phase metrics
of the DOY end (6.5 % or 11.4 d) and DOY start (6.2 % or
11.4 d). An analysis of variance suggested that the LUC ef-
fects did not significantly differ between rise and fall seg-
ments (F = 0.006, df= 1, p = 0.941), the specific model
explained 16% of the variation (F = 15.183, df= 5, p <
0.001), and the metric explained only 5 % of the variation
(F = 7.815, df= 3, p < 0.001). LPJ was an outlier in that it
simulated larger LUC effects in every metric (mean LUC ef-
fect= 18 %), approximately 8 % greater than other models.
The remaining variation in LUC effect was explained by the
larger LUC effect on amplitude in LPX and VISIT (Fig. 8),
whereas OCN simulated only marginally greater LUC effects
than CLM and ORCHIDEE. The LUC effects were of simi-
lar magnitudes to the baseline interannual variation for these
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Figure 7. Emergent correlations among biases for rise (x axes) and fall (y axes) segment model biases, using GOSAT XCO2 as a reference,
for TransCom regions in the Northern Hemisphere (a–d) and Southern Hemisphere (e–h). Data points are the average bias by model (unique
symbols, not shown) for a particular region. Data for the Eurasia Boreal and Asia Tropical regions were excluded for lack of data in both rise
and fall segments. Diagonal black lines are the 1 : 1 correspondence lines; blue lines are significant linear correlations.

metrics, in terms of percent change, or greater in the case of
the LUC effect on amplitude (Table 3).

The importance of the LUC effect on the amplitude of rise
and fall segments was somewhat expected because LUC di-
rectly affects the type of land cover simulated in the models,
for example by converting forest to pasture or pasture to for-
est and thereby influencing the magnitude of surface fluxes
directly (Arneth et al., 2017). However, the effect of LUC
on the temporal metrics of the seasonal cycle (period, phase)
is typically understated in the literature. The LUC effects on
period and phase are of the same relative magnitude as is ob-
served in 2 decades of advancement in the start and end dates
of the carbon uptake period, based on atmospheric inversion
studies (Fu et al., 2017). It should not be a surprise then that
LUC can affect the timing of surface fluxes, but this facet
is often overlooked when the focus is solely on variability
on annual or decadal timescales. At the very least, this work
shows that land surface modelers should consider the impact
of LUC on the timing and duration of surface fluxes, in addi-
tion to its effect on the magnitude of the fluxes.

Table 3. The interannual variation (IAV) in XCO2 seasonal cycle
metrics, presented as the relative standard deviation (i.e., RSD or
coefficient of variation) and the LUC effect, defined as the change in
the XCO2 seasonal cycle metrics when land use change is included
in simulations, relative to simulations with only natural vegetation.
The values for IAV and the LUC effect presented below are first
calculated for each region and segment type (rise, fall) and then av-
eraged over all regions and models (for the LUC effect). The values
for the phasing metrics (day of year, DOY) are calculated using the
period as the divisor.

Metric GOSAT IAV (%) LUC effect (%)

Amplitude 12.3 14.2
Period 14.5 7.5
DOY start 9.3 6.5
DOY end 7.5 6.8

4 Discussion

4.1 Utility of a segment analysis for analyzing cyclic
time series

We demonstrated that a segmentation analysis of satellite-
derived XCO2 seasonal cycles can generate direct estimates
of amplitude, period and phase at global and hemispheric
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Figure 8. Land use change effect on amplitude, period and day of year (DOY). The percentages were calculated from the difference in the
metrics between simulations (S3–S2), scaled relative to amplitude and period of rise and fall segments for each region and model. DOY was
scaled against the period.

scales. In addition, it can reveal stable patterns in the met-
rics, which can be used as benchmarks to evaluate simula-
tion models. There is obvious value in using standard statis-
tics (RMSE, SD, R2, etc.) to characterize a time series and
evaluate it against simulated reproductions (e.g., “Taylor dia-
grams”; Taylor, 2001; Fig. S7). We do this too, but we argue
that applying statistical measures of goodness of fit over the
entire time series misses an opportunity to extract valuable
information from observational data and provide more direct
measures of bias. Studies that have evaluated amplitude and
period biases directly have been based on the mean harmonic
of the seasonal cycle (Peng et al., 2015), which lacks inter-
annual variation, and therefore does not fully represent the
modeled biases. Furthermore, the metrics for the asymmet-
ric rise and fall patterns in seasonal cycles are not typically
estimated or evaluated for bias. In the Europe region, for ex-
ample, the interannual variation in amplitude (1.25 ppm) and
period (25 d) is certainly not trivial (Fig. S8) and if excluded
in evaluations it would cause a biased assessment of what the
models can and cannot do well, limiting the potential of such
assessments to inform potential improvements.

Our study focused on the rise and fall segments in XCO2
seasonal cycles, corresponding to periods when terrestrial
ecosystems generally release and uptake carbon dioxide, re-
spectively. Other studies might be more interested in shorter-

term, pulse-type signals, such as the ability of models to sim-
ulate the effect of large-scale fires or volcano eruptions in an
atmospheric time series. In either case, the segmentation al-
gorithm could help standardize and decompose model bias
into its component parts of amplitude, period and phase bi-
ases.

4.2 Asymmetries provide new insights into the
interannual variation in atmospheric signals

By definition, the asymmetries (Fig. 6) are not anomalies,
but, similarly, the amplitude asymmetries are directly re-
lated to underlying processes generating the imbalance in the
amplitude and period between rise and fall segments. Most
likely, the asymmetries reflect the difference in the magni-
tude or in the timing of fluxes during the growing season for
fall segments and phenological dormancy for rise segments
(Randerson et al., 1997). Whereas the signature of the terres-
trial biosphere may be a more dominant driver of the period
asymmetries, the amplitude asymmetries may also be influ-
enced by processes that the models simply do not simulate
well – or in any sufficient manner in some cases – such as
sub-seasonal representation of fire and LUC (Earles et al.,
2012) or volcano eruptions (Jones and Cox, 2001). The in-
terannual variation in XCO2 period and amplitude asymme-
tries are directly related the activity of terrestrial ecosystems,
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but questions remain – are the annual asymmetries in am-
plitudes or periods evidence of a global response to large-
scale climate phenomena, such as the El Niño–Southern Os-
cillation? Do some regions dominate and influence the sig-
nal more than others? To what degree do the asymmetries in
one region provide information about asymmetries in other
regions, and can we infer dynamics in Boreal regions, for
example, by analyzing atmospheric signals in regions where
satellite coverage is more complete? The asymmetries offer
a new level of information on atmospheric dynamics that is
ripe for exploring.

4.3 The effect of LUC on seasonal cycles is in addition
to the effect on the long-term trend

Much focus has been put on accurately characterizing com-
ponent fluxes from land use and land cover change simulated
by DGVMs (Pongratz et al., 2014; Calle et al., 2016), but
we also show that LUC influences the atmospheric seasonal
cycle period and phase at a level that is comparable to the
reference rates of interannual variation in those metrics (Ta-
ble 3). This underscores the complex problem of trying to
simultaneously resolve the contribution of LUC fluxes to the
long-term trend in atmospheric CO2 (Le Quéré et al., 2018)
and also to represent realistic LUC effects on seasonal-scale
biosphere activity (Betts et al., 2013; Bagley et al., 2014). For
instance, when land is converted from forest to pasture, the
dominant land cover will affect the duration and timing of
the surface fluxes (Fleischer et al., 2016) and this seems ob-
vious. However, DGVMs were not developed during the era
of satellite XCO2 observations, and thus the main issue of
trying to resolve the effect of large-scale changes in land use
for both the long-term trend and seasonal cycle dynamics is
not easily solved. But now that these data are available, per-
haps a new approach is necessary to take advantage of these
large-scale benchmarks.

The inclusion of LUC in the simulations, after includ-
ing the contribution from fossil fuels and ocean, resulted
in a combined long-term trend estimate that was too large,
by 0.07 to 1.72 ppm yr−1, compared to the long-term trend
of GOSAT XCO2 (2.16± 0.01 ppm yr−1) (Fig. S9). The
GOSAT estimate is comparable to an independent estimate
of the long-term trend of XCO2 from SCIAMACHY for the
2000s (1.95± 0.05 ppm yr−1; Schneising et al., 2014). If we
assume that this study’s simulated long-term trends of fossil
fuel fluxes (4.44± 0.008 ppm yr−1) and those of the ocean
(−0.66± 0.0006 ppm yr−1) are better constrained than the
trends from the land fluxes, then according to the GOSAT
benchmark, the simulated land sink is too weak. Despite
the possibility that these simulated LUC fluxes are too high,
the DGVM versions applied in this study do not simulate
a suite of land management processes (shifting cultivation,
wood harvesting, pasture harvest, agriculture management)
that have been shown to increase the annual LUC flux by
20 %–60 % (Arneth et al., 2017), further pointing to a simu-

lated land sink that is too weak. DGVM-based estimates of
the terrestrial land sink have been compared against a resid-
ual term in the global carbon budget that is taken as the av-
erage flux over a decade (Le Quéré et al., 2018), but perhaps
we are overlooking something here. The cumulative fluxes
simulated by the models in this study (from 2002 to 2012)
resulted in a long-term trend that is at odds with the satel-
lite record, and it is unclear why. We must therefore attempt
to reconcile biases in both the long-term trend and seasonal
cycle dynamics if we are to use XCO2 or other integrated at-
mospheric measurements to constrain model dynamics and
not simply assess these patterns independently.

4.4 Caveats, limitations and ways forward

The XCO2 gradient in amplitude is approximately half the
gradient in amplitude of in situ surface CO2. The dampened
XCO2 gradient suggests the presence of strong meridional
mixing, which complicates accurate attribution of model bi-
ases to any specific bioregion. In effect, the XCO2 seasonal
cycle is comprised of the fluxes from all regions to vary-
ing degrees (Olsen and Randerson, 2004; Sweeney et al.,
2015; Lan et al., 2017). Given this, simulating the atmo-
spheric transport of the surface fluxes from all regions at once
would allow us to both (i) obtain useable estimates of model
bias and (ii) to provide attribution to those biases. Indeed, the
model biases were fully described but only in terms of XCO2,
not in terms of terrestrial surface fluxes themselves. An ap-
proach for attribution of model bias in XCO2 might be laid
out similar to Liptak et al. (2017), wherein the surface fluxes
from each region (by year) undergo independent atmospheric
transport. In a framework similar to this study, such simula-
tions might prove instrumental in determining the fractional
contribution of each region’s fluxes to XCO2 seasonal cy-
cle characteristics while also providing better guidance for
model development.

Model evaluations also showed that few models have low
bias in all seasonal cycle metrics of amplitude, period and
phasing of simulated XCO2. An inherent requirement for re-
producing the XCO2 signal is that the land-to-atmosphere
fluxes are reasonable in magnitude, duration and timing in all
land regions or, at the very least, in land regions with large
vegetative areas that might disproportionately dominate the
signal. Even though such requirements may be necessary to
simulate the amplitude asymmetries, this is an extreme level
of proficiency that the models simply do not currently ex-
hibit.

Lastly, the relative contribution of land, ocean and fossil
fuel fluxes to the seasonal cycle differs by region, latitude and
time period (Randerson et al., 1997). This poses some con-
cerns because fossil fuel and cement fluxes are considered
to have low uncertainty, but they may be biased too high in
some regions (Saeki and Patra, 2017), affecting our interpre-
tation of the contribution of simulated land fluxes to the sea-
sonal cycle amplitudes, especially if the fossil fuel seasonal
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cycle signal is additive to (or offsets) the signal from the land
fluxes. Other land uncertainties were not addressed in this
study as it was not our intent to determine which DGVM had
zero bias. Instead, we sought to extract unique patterns in
the observed signals so that they may inform model devel-
opment and subsequent evaluations in the future. Model im-
provements in the representation of important land processes,
such as forest demography, wetland and permafrost dynam-
ics, agriculture and land management, and a greater diversity
of functional plant diversity, are all on the horizon (Pugh et
al., 2016; Fisher et al., 2018) and may further improve sim-
ulated atmospheric signals. The patterns in XCO2 seasonal
cycles are emergent from surface fluxes over the globe, and
we foresee a segment-based analysis of atmospheric seasonal
cycles as a way of extracting emergent patterns in the refer-
ence data to help guide future development and gain an im-
proved understanding of the terrestrial biosphere.
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