71 research outputs found

    The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes

    Get PDF
    © The Author(s) 2017. Methylated cytosines (5mCs) are frequently mutated in the genome. However, no studies have yet comprehensively analysed mutation-methylation associations across cancer types. Here we analyse 916 cancer genomes, together with tissue type-specific methylation and replication timing data. We describe a strong mutation-methylation association across colorectal cancer subtypes, most interestingly in samples with microsatellite instability (MSI) or Polymerase epsilon (POLE) exonuclease domain mutations. By analysing genomic regions with differential mismatch repair (MMR) efficiency, we suggest a possible role for MMR in the correction of 5mC deamination events, potentially accounting for the high rate of 5mC mutation accumulation in MSI tumours. Additionally, we propose that mutant POLE asserts a mutator phenotype specifically at 5mCs, and we find coding mutation hotspots in POLE-mutant cancers at highly-methylated CpGs in the tumour-suppressor genes APC and TP53. Finally, using multivariable regression models, we demonstrate that different cancers exhibit distinct mutation-methylation associations, with DNA repair influencing such associations in certain cancer genomes. Taken together, we find differential associations with methylation that are vital for accurately predicting expected mutation loads across cancer types. Our findings reveal links between methylation and common mutation and repair processes, with these mechanisms defining a key part of the mutational landscape of cancer genomes.Link_to_subscribed_fulltex

    Adversarial Machine Learning: Bayesian Perspectives

    Full text link
    Adversarial Machine Learning (AML) is emerging as a major field aimed at protecting machine learning (ML) systems against security threats: in certain scenarios there may be adversaries that actively manipulate input data to fool learning systems. This creates a new class of security vulnerabilities that ML systems may face, and a new desirable property called adversarial robustness essential to trust operations based on ML outputs. Most work in AML is built upon a game-theoretic modelling of the conflict between a learning system and an adversary, ready to manipulate input data. This assumes that each agent knows their opponent's interests and uncertainty judgments, facilitating inferences based on Nash equilibria. However, such common knowledge assumption is not realistic in the security scenarios typical of AML. After reviewing such game-theoretic approaches, we discuss the benefits that Bayesian perspectives provide when defending ML-based systems. We demonstrate how the Bayesian approach allows us to explicitly model our uncertainty about the opponent's beliefs and interests, relaxing unrealistic assumptions, and providing more robust inferences. We illustrate this approach in supervised learning settings, and identify relevant future research problems

    Proteogenomic analysis prioritises functional single nucleotide variants in cancer samples

    Get PDF
    © Ma et al. Massively parallel DNA sequencing enables the detection of thousands of germline and somatic single nucleotide variants (SNVs) in cancer samples. The functional analysis of these mutations is often carried out through in silico predictions, with further downstream experimental validation rarely performed. Here, we examine the potential of using mass spectrometry-based proteomics data to further annotate the function of SNVs in cancer samples. RNA-seq and whole genome sequencing (WGS) data from Jurkat cells were used to construct a custom database of single amino acid variant (SAAV) containing peptides and identified over 1,000 such peptides in two Jurkat proteomics datasets. The analysis enabled the detection of a truncated form of splicing regulator YTHDC1 at the protein level. To extend the functional annotation further, a Jurkat phosphoproteomics dataset was analysed, identifying 463 SAAV containing phosphopeptides. Of these phosphopeptides, 24 SAAVs were found to directly impact the phosphorylation event through the creation of either a phosphorylation site or a kinase recognition motif. We identified a novel phosphorylation site created by a SAAV in splicing factor SF3B1, a protein that is frequently mutated in leukaemia. To our knowledge, this is the first study to use phosphoproteomics data to directly identify novel phosphorylation events arising from the creation of phosphorylation sites by SAAVs. Our study reveals multiple functional mutations impacting the splicing pathway in Jurkat cells and demonstrates potential benefits of an integrative proteogenomics analysis for high-throughput functional annotation of SNVs in cancer.Link_to_subscribed_fulltex

    The search for cis-regulatory driver mutations in cancer genomes

    Get PDF
    With the advent of high-throughput and relatively inexpensive whole-genome sequencing technology, the focus of cancer research has begun to shift toward analyses of somatic mutations in non-coding cis-regulatory elements of the cancer genome. Cis-regulatory elements play an important role in gene regulation, with mutations in these elements potentially resulting in changes to the expression of linked genes. The recent discoveries of recurrent TERT promoter mutations in melanoma, and recurrent mutations that create a super-enhancer regulating TAL1 expression in T-cell acute lymphoblastic leukaemia (T-ALL), have sparked significant interest in the search for other somatic cis-regulatory mutations driving cancer development. In this review, we look more closely at the TERT promoter and TAL1 enhancer alterations and use these examples to ask whether other cis-regulatory mutations may play a role in cancer susceptibility. In doing so, we make observations from the data emerging from recent research in this field, and describe the experimental and analytical approaches which could be adopted in the hope of better uncovering the true functional significance of somatic cis-regulatory mutations in cancer.Link_to_subscribed_fulltex

    Mutational processes of distinct POLE exonuclease domain mutants drive an enrichment of a specific TP53 mutation in colorectal cancer

    Get PDF
    Author summary Cancer arises through the accumulation of somatic mutations. The way that these somatic mutations form can vary greatly in different cancers. One of the most mutagenic processes that have been identified is caused by mutations within a replicative DNA polymerase known as Polymerase Epsilon (POLE). Cancers with such mutations present with hundreds of thousands of somatic mutations in their genome. Previous cancer genomics studies have identified a number of mutation hotspots in POLE, however how these different POLE mutants behave in affecting mutation distribution has not been studied. Here, we describe the genome-wide mutation profiles of distinct POLE mutant cancers. We find that different mutants indeed result in different mutation profiles and that this can be explained by the different fidelities of these mutants in replicating specific DNA sequences. Significantly, these differences have important implications in cancer formation as we found that a POLE mutation is strongly associated with a specific truncation of the TP53 cancer driver gene. This study furthers our understanding of the POLE mutagenic process in cancer and provide important insights into carcinogenesis in cancers with such mutations.Peer reviewe

    Functional Mutations Form at CTCF-Cohesin Binding Sites in Melanoma Due to Uneven Nucleotide Excision Repair across the Motif

    Get PDF
    © 2016 The Author(s) CTCF binding sites are frequently mutated in cancer, but how these mutations accumulate and whether they broadly perturb CTCF binding are not well understood. Here, we report that skin cancers exhibit a highly specific asymmetric mutation pattern within CTCF motifs attributable to ultraviolet irradiation and differential nucleotide excision repair (NER). CTCF binding site mutations form independently of replication timing and are enriched at sites of CTCF/cohesin complex binding, suggesting a role for cohesin in stabilizing CTCF-DNA binding and impairing NER. Performing CTCF ChIP-seq in a melanoma cell line, we show CTCF binding site mutations to be functional by demonstrating allele-specific reduction of CTCF binding to mutant alleles. While topologically associating domains with mutated CTCF anchors in melanoma contain differentially expressed cancer-associated genes, CTCF motif mutations appear generally under neutral selection. However, the frequency and potential functional impact of such mutations in melanoma highlights the need to consider their impact on cellular phenotype in individual genomes.Link_to_subscribed_fulltex
    corecore