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Abstract

Cancer genomes with mutations in the exonuclease domain of Polymerase Epsilon (POLE)

present with an extraordinarily high somatic mutation burden. In vitro studies have shown

that distinct POLE mutants exhibit different polymerase activity. Yet, genome-wide mutation

patterns and driver mutation formation arising from different POLE mutants remains

unclear. Here, we curated somatic mutation calls from 7,345 colorectal cancer samples

from published studies and publicly available databases. These include 44 POLE mutant

samples including 9 with whole genome sequencing data available. The POLE mutant sam-

ples were categorized based on the specific POLE mutation present. Mutation spectrum,

associations of somatic mutations with epigenomics features and co-occurrence with spe-

cific driver mutations were examined across different POLE mutants. We found that different

POLE mutants exhibit distinct mutation spectrum with significantly higher relative frequency

of C>T mutations in POLE V411L mutants. Our analysis showed that this increase fre-

quency in C>T mutations is not dependent on DNA methylation and not associated with

other genomic features and is thus specifically due to DNA sequence context alone. Nota-

bly, we found strong association of the TP53 R213* mutation specifically with POLE P286R

mutants. This truncation mutation occurs within the TT[C>T]GA context. For C>T mutations,

this sequence context is significantly more likely to be mutated in POLE P286R mutants

compared with other POLE exonuclease domain mutants. This study refines our under-

standing of DNA polymerase fidelity and underscores genome-wide mutation spectrum and

specific cancer driver mutation formation observed in POLE mutant cancers.
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Author summary

Cancer arises through the accumulation of somatic mutations. The way that these somatic

mutations form can vary greatly in different cancers. One of the most mutagenic processes

that have been identified is caused by mutations within a replicative DNA polymerase

known as Polymerase Epsilon (POLE). Cancers with such mutations present with hun-

dreds of thousands of somatic mutations in their genome. Previous cancer genomics stud-

ies have identified a number of mutation hotspots in POLE, however how these different

POLE mutants behave in affecting mutation distribution has not been studied. Here, we

describe the genome-wide mutation profiles of distinct POLE mutant cancers. We find

that different mutants indeed result in different mutation profiles and that this can be

explained by the different fidelities of these mutants in replicating specific DNA

sequences. Significantly, these differences have important implications in cancer forma-

tion as we found that a POLE mutation is strongly associated with a specific truncation of

the TP53 cancer driver gene. This study furthers our understanding of the POLE muta-

genic process in cancer and provide important insights into carcinogenesis in cancers

with such mutations.

Introduction

POLE encodes the catalytic subunit of DNA Polymerase Epsilon, which is responsible for

DNA fidelity during the process of eukaryotic nuclear genome replication [1]. Functional

POLE mutations have been identified in less than 1% of all cancer genomes but these genomes

are characterized by exceptionally high tumor mutation burden [2]. Somatic mutations of

POLE exonuclease domain are frequently enriched in brain, uterine and colorectal cancer [3],

and patients with POLE dysfunction usually have significantly better prognosis and require

less intensive treatment [4].

The POLE mutational process shapes the cancer genome into a unique mutational signa-

ture with high proportions of C>A mutations at TCT contexts, C>T mutations at TCG

contexts and T>G mutations at TTT contexts, which is known as COSMIC signature 10

[5]. Several driver mutations have been identified in the POLE exonuclease domain (codons

268–471) [6], the most frequent being P286R and V411L [2]. The crystal structure of the

yeast orthologue has shown that P301R (P286R in Human) could change the exonuclease

domain, with R301 pointing towards the exonuclease site, leading to polymerase hyperac-

tivity and increased capacity to extend mismatches by interfering with DNA binding to the

exonuclease site [7,8]. By contrast, residue V411 lies a distance away from the binding site

and does not interact with the DNA sequence directly [9]. In endometrial cancer, it has

been shown that V411L and P286R display different signature fraction with V411L charac-

terized by relative higher fraction of C>T mutations in endometrial cancer [10]. Data

showing the mutation spectrum of individual POLE mutants supports differences in the

way mutants generate somatic mutations [11] but these differences have not yet been

quantified.

Mutations are distributed unevenly across the cancer genome and mutation rates across

genomic regions are highly heterogeneous [12] due to genomic and epigenetic features includ-

ing cytosine methylation [13], replication timing [14], tri-nucleotide/penta-nucleotide context

composition [5], transcription factor binding, chromatin organization [15], gene expression

levels [16], orientation of the DNA minor groove around nucleosomes [17], CTCF binding

[18] and gene body features such as introns and exons [19]. As POLE mutant cancers are
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usually hypermutated and individual mutants might lead to distinct mutator phenotypes, the

precise mechanisms of mutagenesis may be revealed by investigating whether they show dis-

parity in mutational spectrum and distribution across genomic regions.

In this study, we first characterized 53 whole genomes of colorectal cancer, which harbor

different POLE exonuclease domain somatic mutations (n = 9) or are POLE wild-type

(n = 44). The mutational spectrum of the different POLE mutants was compared and validated

in a large cohort of 7,345 colorectal cancer samples from additional whole exome/target cap-

ture sequencing data. We also studied the association between cytosine methylation and muta-

tion burden, and examined genome-wide mutation profiles across a range of genomics

features. Finally, combining these datasets, we sought to identify associations between specific

POLE mutants and the formation of driver mutation hotspots in colorectal cancer.

Results

Profile of mutation signatures in different POLE-mutant colorectal cancers

As a first step, a collection of 53 colorectal cancer whole genomes from The Cancer Genome

Atlas were analyzed, in which 44 are POLE wild-type and microsatellite stable, and the remain-

ing nine carried non-synonymous somatic mutations in the POLE exonuclease domain (S1

Table, all other mutations have been listed in S10 Table). We clustered these samples based

on the proportion of 96 tri-nucleotide contexts and obtained four distinct groups (Fig 1A).

The nine POLE mutants were clustered into three subgroups, which are represented as P286R

(n = 3), V411L (n = 3) and Other-Exo (n = 3) (sample with other mutations in the POLE exo-

nuclease domain, including P286H, S297F and F367S). Samples within same subgroups have

very high cosine similarity and mutational signature profile (S1A and S1B Fig). In line with

previous reports [11], all of the POLE mutants showed a high proportion of C>A and T>G

mutation in TCT and TTT tri-nucleotide contexts, which resembles COSMIC signature 10

(Fig 1B and S2 Fig). When examining genome-wide C>T mutations, we observed a higher

proportion of C to T mutations in POLE V411L mutants accounting for 33.7% of all substitu-

tions, while there were 16.0% and 23.3% in P286R and Other-Exo mutants respectively (P286R

vs V411L, P<0.001, Chi-squared test, Fig 1C). The differential mutation spectrum clustering

of P286R from V411L mutants was also evident in an additional 32 POLE mutant colorectal

cancer samples with WGS, WXS and target capture sequencing data (S2 and S4A Figs), con-

firming the differences observed in the WGS samples.

We then computed proportions of C>T mutations in different penta-nucleotide contexts

to investigate differential enrichment of these mutations (Fig 1D and S5 Fig). All three types

of POLE mutants display enriched C>T mutations in CpG contexts, with the proportion sig-

nificantly higher in V411L (52.14%), compared with P286R (41.17%) and other POLE mutants

(45.67%) (p< 0.0001, Chi-square test, S4B Fig). We also explored the penta-nucleotide con-

text enrichment of C>A and T>G mutations, but did not find substantial differences in the

frequency of these mutations in different mutants (S4C and S4D Fig). Based on this analysis,

we can conclude that there are differences in the mutation spectra between the POLE mutants

which can be largely attributable to different frequencies of C>T and C>A mutations and the

relative frequency of C>T mutations at CpG dinucleotides.

Differential mutation load of C>T mutations in POLE mutants is

independent of cytosine methylation

We and others have previously reported that C>T mutation load at CpG dinucleotides in

many cancer types including POLE mutant cancers show strong positive correlation with

Cancer mutational processes of POLE mutants
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Fig 1. Mutational spectrum of distinct colorectal cancer POLE mutants. (A) Hierarchical clustered heatmap of the frequency of 96 types of mutational contexts

within each WGS POLE mutant ranging from light red (0%) to dark red (35% of all mutations). Four groups “MSS (microsatellite stable), V411L, P286R and Other-

Exo” were labeled on the far left panel, and total mutation burden was indicated in the right bottom. The MSS spectrum is averaged across the 44 TCGA MSS POLE

wild-type WGS samples while the TCGA samples ID for each POLE mutant is shown. Mutants with multiple variants are underlined. (B) Mutational spectrum of four

POLE-mutant groups based on 96 mutational contexts, with mutation type indicated on the top panel. (C) Proportion of C>A, C>T and T>G mutation in four POLE

mutant groups. The significance was calculated by paired Chi-squared test. Error bars represent +/- 2 SE. (D) Profile of C>T mutations in penta-nucleotide contexts,

with genome-wide frequency of each penta-nucleotide indicated at bottom. The detail of context information is indicated in S8 Table. ��� denotes P< 0.001.

https://doi.org/10.1371/journal.pgen.1008572.g001
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5-methylcytosine (5mC) level [20–22]. To investigate whether the increased C>T mutation

load observed in the V411L mutants compared with P286R mutants is due to differential

dependence on CpG methylation we sought to compare the relationship between 5mC level

and C>T mutation frequency in the different POLE mutants. Methylation levels at CpG dinu-

cleotides from normal sigmoid colon whole genome bisulfite sequencing data was correlated

with mutational burden across the colorectal cancer genome. In all three types of POLE

mutants, including POLE wild-type MSS samples, the mutation burden increased significantly

with methylation levels (Fig 2A). To investigate whether differences in the CpG mutation load

between the different POLE mutants is dependent on methylation level, mutation burden

within each bin of methylation level for the different POLE mutants were normalized against

V411L. We found that the slope of the normalized mutation burden does not substantially

deviate from zero across increasing levels of methylation (Fig 2B). This finding suggests that,

while mutation burden at CpG sites are dependent on 5mC levels, the relative level of depen-

dence is the same in the different POLE mutants, thus the increased C>T mutation load in

V411L compared with the other POLE mutants is likely due to sequence context alone.

Fig 2. Association of methylation and mutation in different POLE mutants. (A) Correlation between mutations per megabase (Mb) at CpG dinucleotides and

fractions of CpGs methylated across different POLE mutants and microsatellite stable (MSS) samples. (B) Mutation burden of each mutant was normalized by the

mutation rate of V411L in each methylation level.

https://doi.org/10.1371/journal.pgen.1008572.g002
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Pentanucleotide sequence context accounts for non-linear relationship

between C>T load and CpG methylation level in POLE mutants

Finally, in all POLE mutants, mutation burden peaks when the level of CpG methylation mea-

sured is between 90% and 100%, but decreases when the level of CpG methylation level is

equal 100%. We examined whether sequencing coverage, replication timing or repeat

sequences in different methylation levels contributes to this change, but found that they were

not associated with this observation (S6A–S6D Fig). We then tested the composition of penta-

nucleotide contexts at different levels of methylation, since C>T mutations are also enriched

in specific penta-nucleotide context as discussed above (S4B Fig). We found that there are

more CpGs in the TTCGN context in the 90–100% CpG methylation bin compared with the

100% CpG methylation bin, accounting for 8.67% and 5.62% of CpGs respectively (p<0.001,

Chi-square test, Fig 3A). Following normalization for penta-context composition across the

different bins, the mutation rate at the 90–100% bin decreased by 17.6% (Other-Exo), 18.04%

(V411L) and 20.02% (P286R) POLE mutants respectively, making the mutation rate in this bin

more similar to that of the 100% methylated CpG sites (Fig 3B–3D). This finding again dem-

onstrates that different preferences for penta-nucleotide context within POLE mutants can

account for differences in the observed mutational patterns.

Distinct POLE mutants show similar genome-wide mutational patterns

Having shown that sequence context plays a major role in the observed mutation spectra of

different POLE mutants, we further sought to determine whether there are differences in

mutation patterns across different epigenomic features across the genome.

Characterization of mutations in CTCF binding sites: CCCTC-binding factor (CTCF) is a

transcription factor and plays an essential role in constructing three-dimensional genome

organization. Somatic mutations in CTCF binding sites of the CTCF-cohesin complex (CBS)

are widely observed in cancer genomes [23]. Samples with POLE mutations displayed lower

mutation frequencies at, and adjacent to, CBS when compared with flanking regions [24], but

the mutation rate of distinct POLE mutants has not been examined. We calculated mutation

counts at each position within 1000 nucleotides from the CTCF motif center and we identified

a distinct pattern whereby mutation burden was significantly decreased in all the three

mutants (Fig 4A). For each mutant, mutation load starts to decline approximately 110 nucleo-

tides from the CTCF motif center, and then presents a significant lower mutation frequency

than expected by chance within the center of the CTCF motif, especially at the central cytosine

nucleotide (P<0.001, paired Wilcoxon signed-rank test, S7A and S7B Fig). We characterized

the mutation signature within this ±110 nucleotide region and we observed a similar muta-

tional pattern with genome-wide signature (S7C Fig), suggesting that at least some of the CBS

sites examined are still under the POLE mutation process.

Mutation density around the transcription start site: We also investigated mutation density

around the transcription start site (TSS) in different POLE mutants. The DNA sequence

around the TSS can show distinct mutation patterns, as active promoters are occupied with

transcription factors, which may inhibit DNA repair access or activity [25,26]. We examined

mutation profiles of C>T, C>A and T>G mutations around TSSs for each POLE mutant.

Notably, before normalization, T>G mutations were substantially decreased at the TSS (S7D

Fig). However, following normalization for trinucleotide sequence context, this was no longer

evident, and we only observed substantial decrease in C>T mutations close to the TSS likely

due to reduced DNA methylation at many gene promoters (Fig 4B).

Exonic regions show decreased mutation burden in POLE mutants: Increased mismatch

repair (MMR) activity at exons compared with introns has been shown to result in a significant

Cancer mutational processes of POLE mutants
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decrease in exonic mutation rate in MMR proficient POLE mutants [19]. We investigated

mutation patterns of exonic and intronic regions in different POLE mutants (Fig 4C). All

three kinds of POLE mutants showed decreased mutation rates in exonic region. Particularly

in P286R mutants, the average mutation burden in the middle of intronic regions is approxi-

mately double the count in the middle of exonic regions (260 vs 528 Mut/Mb, S7E Fig).

POLE mutants present mutational strand asymmetries:

Since the exonuclease domain of POLE is responsible for proofreading during synthesis of

the DNA leading strand, mutations caused by deficiency of the domain should show very

strong strand asymmetries [27]. We identified this phenomenon in all distinct POLE mutants,

Fig 3. Sequence context in different methylation bins. (A) Proportion of each “NNCGN” penta-nucleotide context in different methylation level, with “TTCGN”

shadowed. The detail of context information is indicated in S8 Table. (B-D) Correlation of methylation and mutation burden after normalization of penta-nucleotide

context composition, with non-normalized data indicated in light blue.

https://doi.org/10.1371/journal.pgen.1008572.g003
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Fig 4. Genome-wide mutational patterns of distinct POLE mutants. (A) Somatic substitutions at CBSs with a flanking sequence of 1 kilo bp in different POLE

mutants. The expected mutation was indicated in light red colour. (B) Mutation profile around transcription start sites in different mutants. Three primary mutation

types C>A (red), C>T (blue) and T>G (green) in specific context were showed. Mutation counts were normalized by the number of corresponding context and the

abundance of each context was displayed in the far left panel, together with mutation data in 100 bp bins (grey) is shown. (C) Profile of mutation burden across different

part of genes in different mutants. Each part of gene was divided into 20 bins and mutation burden was calculated separately. Methylation level of each part was showed

in the top panel. (D) Mutational strand asymmetry associated with replication in different mutants. Lower panel of each mutant shows the log2 ratio of each pair of bars.

https://doi.org/10.1371/journal.pgen.1008572.g004
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with all mutants showing similar levels of strand asymmetry (Fig 4D). As expected, in left (5’)-

replicating regions that are enriched in leading strand synthesis we observed C>A, C>T and

T>G mutations predominantly. On the contrary, G>T, G>A and A>C mutations are pre-

dominantly in right (3’)-replicating regions that are enriched in lagging strand synthesis.

Increased mutation density at late replicating regions: The mutation density in late-

replicating regions should be higher than in early-replicating regions in MMR proficient can-

cer samples due to differential MMR efficiency [28]. Although all POLE mutants showed high

mutational burden, they are MMR proficient with a microsatellite stable phenotype. The muta-

tion burden of a range of mutational signatures have been associated with DNA replication

timing, and a significant correlation with replication timing has been reported in cancer sam-

ples with POLE mutant associated mutational signature 10 [29]. We calculated mutation den-

sity in genomic region with distinct replication timings. As expected, all mutants similarly

displayed higher mutation density in late-replicating regions than in early-replicating regions

despite their different mutational context (S7F and S7G Fig).

Periodicity of mutation rate across and within nucleosomes: The minor groove of DNA

that wraps around nucleosomes presents a differential pattern due to its physical interaction

with histones, and this pattern determines periodicity in mutation rate [17,30]. Colorectal can-

cers with contribution from signature 10 have been reported to exhibit a positive minor-in rel-

ative increase of mutation rate as a consequence of interaction between the processes of DNA

damage and repair within the nucleosome [17]. We investigated mutation rate periodicity in

each specific POLE mutant separately, and we observed the positive minor-in relative increase

of mutation rate in all POLE mutants to comparable levels, suggesting that the different POLE

mutant induced mutations are not differentially affected by DNA-histone interactions (S7H–

S7J Fig).

In order to investigate if the individual samples in Other-Exo group could mask any specific

errors, we carried out the analysis of the samples in Other-Exo group individually as indicated

in (S8 Fig). All mutants show very consistent mutational patterns in terms of CTCF binding

sites, transcription start site, exonic and intronic regions and mutational asymmetry.

Mutational context of POLE-mutants predisposes colorectal cancers to

developing TP53 R213� mutation hotspots

Since we had identified that different POLE mutants have different mutation spectra, were

interested to determine whether this may predispose cells to specific additional cancer driver

mutations. We screened a list of 47 cancer driver mutation hotspots, determined based on

recurrence in cohorts where we could access mutation calls in an unbiased manner (see Meth-

ods), in a total of 7,345 colorectal cancer samples including 47 POLE mutants (16 P286R, 15

V411L and 16 Other-Exo mutants with Sig10) and 7,298 POLE wild-type samples, to investi-

gate if any hotspots are enriched in specific POLE mutants (S2 Table). For all hotspots tested,

only the truncating mutation R213� in TP53 was identified to be significantly enriched in

POLE P286R mutants (P = 0.0076, Fisher’s exact test, Benjamini-Hochberg FDR 10%, Fig 5A

and S3 Table). For all P286R mutants, 62.5% (10/16) harbor this hotspot, while it occurs in

only 19.4% (6/31) of other POLE mutants (Fig 5A and S3 Table). For the remaining 7,298

POLE wild-type samples, only 2.2% (163/7298) were identified with this hotspot mutation.

This nonsense mutation is a C>T transition in the context of TT[C>T]GA (Fig 5B), which is

a relatively enriched context in P286R mutants, with adenine being more prevalent in the 5th

position, compared with the other POLE mutants (Fig 5C, p<0.05, Student’s t-test, S9 Fig).

Since the mutation also occurs at a highly methylated CpG site [20], we specifically compared

the frequency of TT[C>T]GA in P286R versus V411L relative to the number of C>T

Cancer mutational processes of POLE mutants
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mutations at CpG sites (i.e. NN[C>T]GN). It is evident that this context is significantly more

enriched in POLE P286R mutants (Fig 5D, p< 0.01, Student’s t-test). To quantify the effect

this difference might have on the mutagenesis of TTCGA sites across the genome, we counted

the number of sites in POLE P286R, V411L and other exonuclease domain mutants respec-

tively and normalized the count by the total number of NN[C>T]GN mutations in each group

(S5 Table). We find that such sites are 15% more likely to be mutated (5.68% versus 4.95% of

TTCGA mutated in P286R and V411L respectively). As the relative frequency of the TT[C>T]

GA pentanucleotide context differs between individual samples, we also compared its relative

Fig 5. Mutation hotspots in POLE mutants. (A) Contingency table of different POLE-mutant and POLE wild type colorectal cancer samples with or without the TP53

R213� mutation. Samples with Sig10 were confirmed by either POLE driver mutation or mutational spectrum clustering. (B) Truncating mutation TP53 R213� was

caused by C>T substitution in TT[C>T]GA context. (C) Frequency of 21-bp sequence context centered by mutated cytosine in different POLE mutants, and the penta-

nucleotide contexts were indicated in black box. Proportion of TT[C>T]GA mutations in the NN[C>T]GN pentanucleotide context in all POLE P286R and V411L

mutants (D) and (E) POLE P286R mutants with and without the TP53 R213� mutation. � < 0.05. �� < 0.01, Student’s t-test.

https://doi.org/10.1371/journal.pgen.1008572.g005
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frequency in POLE mutants with and without the TP53 R213� mutation. This mutational con-

text was found to not only be significantly higher in POLE P286R mutants with the TP53

R213� mutation compared with those without this mutation (P< 0.05, Student’s t-test, Fig

5E). This suggests that for C>T mutations at CpG sites, POLE P286R mutant colorectal can-

cers are more likely to form mutations at TTCGA sequence context and thus have a higher

chance of acquiring the TP53 R213� mutation.

To determine if this effect is cancer specific, we also explored if the enrichment of this hot-

spot is present in 2045 endometrial cancer samples (S6 Table). TP53 R213� is not more

enriched in POLE P286R mutants than other POLE mutants but it is significantly enriched in

endometrial POLE mutants (P<0.001, Chi-square test, S7 Table) as 15.28% (11/72) POLE

mutants harbor this hotpot while it is identified in 0.006% (11/1973) non-POLE mutants. This

suggests that this enrichment is specific to colorectal cancer and may reflect the higher appar-

ent positive selection for TP53 mutations in colorectal cancer compared with endometrial can-

cers in general with 57% (4,677/7,345) TP53 mutants in colorectal cancer versus 48% (974/

2,045) TP53 mutants in endometrial cancer (P < 0.001, Fisher’s exact test).

Discussion

In this study, we investigated genome-wide regional mutational profiles of different POLE

mutants, as well as their influence on driver mutation formation in cancer. Genomes with

POLE functional defects present with differential mutation spectra but show largely similar

regional mutational profiles. Significantly, we identified a recurrent nonsense mutation in

TP53 that is enriched in P286R mutants, indicating a new insight into mutational processes of

specific POLE mutants.

Shinbrot et al. (2014) [11] had previously characterized the functional POLE mutants with

impaired exonuclease activity and describe a preference for C>A mutations in such mutants.

Our study stratifies the functional POLE mutants in more detail based on the 96 trinucleotide

mutational contexts and supported by expanded panel data (S1A Fig) and signature contribu-

tion (S2 Fig). We show that higher frequency of C>T mutations in V411L mutants distin-

guishes them from other mutants. Methylated cytosine have been shown to readily mutate to

thymine as a result of methylcytosine deamination [31]. Although POLE V411L had compara-

bly more mutations at the cytosine of CpG dinucleotides than other POLE exonuclease

domain mutants (16.68% (V411L), 6.38% (P286R) and 10.19% (Other-Exo)), all mutants

showed the same positive association with methylation level after adjusting for total CpG

mutation count. This means that the higher level of C>T mutations in the POLE V411L com-

pared with other POLE is not dependent on methylation, but rather sequence context is the

major factor in determining the mutational spectrum of the different POLE exonuclease

domain mutants. Our finding that different POLE mutants display consistent mutational dis-

tribution across genomic regions including CTCF binding sites, transcription start site, exonic

and intronic regions, regions of different replication timing and regions across and within

nucleosomes further confirms that the differential mutational process between POLE exonu-

clease mutants is principally at highly localized sequence level.

More generally, our study also highlighted some general mutagenic processes common to

all POLE exonuclease domain mutants. For instance, CBSs are frequently mutated across dif-

ferent cancer types, and are a major mutational hotspot in noncoding cancer genomes [24].

CTCF binding sites display a specific mutation pattern in skin cancers due to differential

nucleotide excision repair [18]. We observed decreased mutation density at and adjacent to

CBSs, and the decline starts at around 110 nucleotide distance from the center of the CBS. It

has been proposed that the decrease in mutation density in this region might be due to either
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the use of an alternative polymerase [24]. CTCF-cohesin binding sites might be treated like

DNA-protein crosslinks during replication, and are bypassed with the help of an accessory

helicase RTEL1 and is later filled by translesion synthesis [32]. Finally, disparity in mutation

rate between exon and intron regions, and early and late replication timing regions were iden-

tified in all POLE mutants, although the effect appeared strongest in the P286R mutants, possi-

bly due to the higher mutation burden in these samples. These results suggest that mismatch

repair is an important system to protect against POLE replication errors regardless of subtle

differences in the way the mutations were generated.

Mutational signatures representing the spectrum of different somatic mutations can be

employed to decipher the mutational process that operated within an individual cancer [33].

Recent studies have revealed the associations between mutational processes and somatic driver

mutations to some extent, and indicated that altered tri-nucleotide preferences arising from a

certain signature would increase the likelihood of the associated driver mutation arising

[34,35]. Previous studies have identified an association between the TP53 R213� truncating

mutation and POLE mutant cancers [11,20]. Our study has further identified that this TP53

hotspot is significantly enriched in POLE P286R mutants (62.5%) in colorectal cancer. The

TP53 R213� truncating mutation is caused by a C>T transition in a TTCGA penta-nucleotide

context, and we found that POLE mutants with this mutation do generally have higher relative

frequency of this mutational context compared to POLE mutants without this mutation. This

implies a possible direct causal relationship between POLE-associated mutagenesis and acqui-

sition of this driver mutation. However, although the difference in the relative mutation fre-

quency between POLE R286R and the other exonuclease domain mutations is significant, this

difference in level is modest and thus the selection for TP53 mutations may also play a role in

the final observed frequency of such mutations. Furthermore, the enrichment of TP53 R213�

was not present POLE P286R mutant endometrial cancer, it is possible that selection also plays

a role as TP53 mutations are more prevalent in colorectal cancers suggesting that there is

stronger selective pressure for such mutations which may explain why the enrichment of the

TP53 R213� mutation is only present in POLE P286R in colorectal cancer. It remains intrigu-

ing why the specific mutation spectrum varies even within cancer genomes with the same

POLE mutation. Since the mutation load in POLE mutants is very high, even in targeted

sequencing data, the differences are unlikely due to variations in sampling. It is known that

human DNA polymerases can be postranslationally modified [36] and it may be possible that

interactions with differential posttranslational regulation and POLE mutations underlies the

observed differences in mutation spectra.

Finally, our work supports recent molecular and structural studies on POLE mutants.

V411L and P286R are the two most frequent POLE mutants and they are located far away

from each other in the exonuclease domain, thus conferring different functions [37]. Structural

and molecular dynamics simulation studies in S. cerevisiae have revealed that P301R (P286R

in Human) substitution prevents proper positioning of ssDNA in the exonuclease active site of

Pol ε, resulting in promoting the extension of mismatched primer termini [7,8]. However,

V411 is far away from exonuclease active site may function by affecting the positions of other

residues adjacent to the active site [9]. In yeast, POLE mutants with a weak exonuclease activity

have more C>T and less C>A mutations than mutants with no exonuclease activity [7]. We

therefore speculate that the proportionally reduced C>A and increased C>T mutation loads

in V411 may arise due to stronger exonuclease activity, as the mutation is distal from that site.

Consistent with this, in a cell free system, V411L was found to have 3-fold reduced exonuclease

activity compared to wild-type, while P286R mutants displayed a 10-fold reduction [11].

In summary, understanding how specific driver mutation may arise could lead to new tar-

geted therapeutic strategies. This study has shown the importance of further subtyping
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cancers, not only focusing on the mutated genes, but also the specific mutations within those

particular genes. Stratifying samples based on DNA polymerase activity defects has enabled us

to gain a better understand the mutational processes in colorectal cancer genomes.

Methods

Ethics statement

This study was approved by the Institutional Review Board of the University of Hong Kong/

Hospital Authority Hong Kong West Cluster (approval no. UW 18–599). All patient data ana-

lyzed in the study were acquired as anonymized data.

Somatic mutations and sample classification

All somatic mutations of 53 whole genomes colorectal cancer were obtained from The Cancer

Genome Atlas (TCGA) [38]. Microsatellite status and POLE mutation status were provided for

each sample as listed in S1 Table.

2,506 colorectal samples with complete whole exome/target capture data from TCGA and

previously published datasets [39–41] were first used to identify recurrent driver mutation sites

(in at least 20 individuals) in colorectal cancer. Furthermore, 257 whole genome sequenced

colorectal cancer samples but with only selected mutation data available [24] and another 4,582

colorectal samples also with target capture data from AACR Project GENIE through cBioPortal

[42] were additionally used for analyzing POLE mutants with driver mutation hotspots. A table

showing the sample cohorts and the mutation status of all samples are show in S2 and S5

Tables, respectively. Mutations were annotated by oncotator-1.9.9.0 when necessary.

For all samples with non-silent mutations in POLE, we performed clustering based on pro-

portion of 96 tri-nucleotide context in order to distinguish functional POLE mutants that are

characterized by mutational signature 10. For samples obtained from AACR Project GENIE,

functional POLE mutants were confirmed by a list of reported driver mutations reported pre-

viously [2].

Mutational signature analysis

The profile of each signature was displayed using the six substitution subtypes: C>A, C>G,

C>T, T>A, T>C and T>G. For signature generated by tri-nucleotide context, each substitu-

tion was examined by incorporating information on the bases immediately 5’ and 3’ to each

mutated base to generate 96 possible mutation types. For signature generated by penta-nucleo-

tide context, each substitution was examined by incorporating information of two nucleotides

at 5’ and 3’ to each mutated base resulting in 1536 possible mutation types. The mutational sig-

natures were displayed and reported based on the observed tri-nucleotide/penta-nucleotide

frequency of the human genome.

Methylation data and mutation

Whole genome bisulfite sequencing data from normal sigmoid colon tissue were downloaded

from the Roadmap Epigenomics Atlas [43]. All cytosines in the CpG di-nucleotide were

merged into 12 bins according to their methylation level as: [0], (0, 0.1], .., (0.9, 1.0), [1]. These

bins were then used as intersected regions to calculate mutation rate in each methylation level.

Penta-nucleotide context normalization for each methylated level

First, the abundance of each penta-nucleotide context in which CpG context located were cal-

culated by using the downloaded whole genome bisulfite sequencing data. Then we weighted
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each context (f) by their counts, and made the sum of weights values equal to 1. Similarly, the

abundance of penta-nucleotide context in each methylation level was also calculated and

weighted (F). Next, the counts of mutated contexts of each sample were computed (N). Finally,

the normalized value of each methylation level was obtained as (C):

C ¼
Pn

k¼1
NðkÞ � f ðkÞ=FðkÞ

CTCF motifs and data analysis

CTCF/cohesin binding sites for the LoVo cell line were obtained from published paper[24].

Each CTCF motif was extended to 1000 bp on each side, and the mutation profiles were gener-

ated by counting mutations that are intersected with these sequences at each base. In order to

obtain expected counts that are affected by fraction of distinct contexts, the following proce-

dures were conducted. First, the count (M) of each mutated context was calculated in the over-

all extended sequences. Then, the abundance of each context in the whole extended sequence

was computed as A, and for each base of each line in the stacked sequence, the relative fre-

quency (f) was calculated by dividing the number of mutations with that context by the abun-

dance A.

f ¼ M=A

Next, for each position p within each sequence, we weighted p by its respective context-spe-

cific frequency f, and made the sum of weights across all 2001 values equal to 1. So the vector

of weights Wp across the specific 2001-bp sequence is given by:

Wp ¼ fp=
Pn
ðk¼1Þ

f ðkÞ

Subsequently, all 2001-bp sequences were stacked and the expected count at position p was

computed as m�Wp, where m is the count of mutations in the sequence where p is located.

Finally, the expected count at a given position p of the stack of aligned sequences is obtained as

the sum of all the expected counts at each sequence of position p.

Generation of mutation and profiles across transcription start sites

The information of transcription start sites (TSS) were obtained from canonical genes from

the UCSC table browser. For each set of TSSs, mutation profiles were generated by counting

the number of three major types of mutations (C>A, C>T and T>G) across a ±5,000-bp win-

dow centered by TSS. Mutation counts were normalized by dividing the abundance of corre-

sponding context at each position.

Periodicity of the relative increase of mutation rate

The methods used for mutational periodicity analysis referred to previously published paper

and script [17]. Briefly, 147 bp length mid-fragments of high-coverage MNase-seq reads repre-

senting putative nucleosome dyads were obtained from the paper published by Gaffney et al

[44]. Then the wig format file was converted to the bed format for following analysis. The rela-

tive positions to the dyad of two center nucleotides of the DNA to decide the minor groove fac-

ing the histones and away were obtained from the paper published by Cui and Zhurkin [45].

These positions combined with somatic mutation data were used to calculate mutation rate in

stretches of DNA with the minor groove facing histones and away from them.
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Calculating mutational strand asymmetries

Replication direction was defined using replication timing profiles that are from previously

published paper [14]. Left- and right-replicating regions were determined by the derivative of

the profile, assigning negative and positive as left-replicating and right-replicating respectively.

For a given mutation type in specific replication direction, the mutation counts (N) in that

region were calculated, and its complementary mutation was calculated as n. Then, asymmetry

(A) was calculated in a given region by:

A ¼ log2ðN=nÞ

Computing mutation density in exonic and intronic region

All gene coordinates were obtained from UCSC table browser. Each gene was divided into

eight parts as 5’UTR, first exon, first intron, middle exon, middle intron, last intron, last exon

and 3’UTR. As the length of sequence in each part is various, we divided every sequence into

20 bins in a given part. Sequences with length of less 20-bp were discarded. Then, the mutation

density was calculated and normalized to mutations per Mb and plotted in each bin.

Replication timing and mutation density

The replication time of different chromosome position was obtained for the HepG2 cell line

from the ENCODE data portal [46]. All the sequence with known replication time was inte-

grated into 5 bins from late to early: [-4.51712, 30.8225), [30.8225, 44.19), [44.19, 55.8262),

[55.8262, 63.7717), [63.7717, 80.6964]. Mutations located in each bin were calculated.

Supporting information

S1 Fig. Hierarchical clustered heatmap of nine whole genome sequencing POLE mutants.

(A)Heatmap is based on cosine similarity as the value of cosine similarity is indicated in each

cell. (B) Heatmap is based on COSMIC signature contribution, and each column represents

one COSMIC signature.

(TIF)

S2 Fig. Mutational spectrum of each whole genome sequencing POLE-mutant based on 96

mutational contexts, with mutation type indicated on the top panel.

(TIF)

S3 Fig. Hierarchical clustered heatmap of all POLE mutants based on COSMIC signature

contribution. Samples with multiple POLE mutations are underlined.

(TIF)

S4 Fig. Mutation spectra of POLE mutants. (A) Hierarchical clustered heatmap of the fre-

quency of 96 types of mutational contexts for 32 POLE samples that have been whole genome,

whole exome or targeted sequenced. Samples with multiple POLE mutations are underlined.

(B) Proportion of C>T mutations in the CpA, CpC, CpG and CpT contexts. Profile of (C)

C>A and (D) T>G (mutations in penta-nucleotide contexts, with genome-wide frequency of

each penta-nucleotide indicated at bottom of each figure.

(TIF)
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S5 Fig. Proportion of C>T mutation in each penta-nucleotide context for each whole

genome sequencing POLE-mutant, with mutation type indicated on the top panel.

(TIF)

S6 Fig. Association of methylation and mutation in different POLE mutants in different

condition. (A) Correlation of methylation and mutation burden after removal of repeat

sequence in CpGs. (B) Correlation of methylation and mutation burden in the condition of

the coverage of CpGs greater than five. (C) Correlation of methylation and mutation burden

in late replication timing CpGs. (D) Correlation of methylation and mutation in early replica-

tion timing CpGs.

(TIF)

S7 Fig. Mutational patterns of different genomic features. (A) Somatic substitutions at CBSs

with a flanking sequence of 200 bp in different POLE mutants. The expected mutation was

indicated in light red color. (B) Profile of mutation type was showed in CBSs with a flanking

200 bp sequence. (C) Mutational spectrum within ± 200bp sequence centered by CBS based

on 96 mutational contexts. (D) Mutation profile around transcription start sites in different

mutants. Three primary mutation types C>A, C>T and T>G in specific context were showed,

and the abundance of each context was displayed in far left panel. (E) Profile of mutation bur-

den across different parts of genes in different mutants. Mutation burden was normalized by

the total number of mutations in each type of mutant. Association of mutational burden and

replication timing. (F) DNA sequence with different replication timing was divided into 5

bins, and mutational burden was calculated in each bin ordered from early-to-late. (G) Muta-

tional burden was normalized by total number of mutations in each type of mutant. Periodic-

ity of tumor mutation rate within nucleosomes in different mutants: (H) Other-Exo, (I) V411L

and (J) P286R. For each figure, the top panel shows observed and expected mutation rate, and

the bottom panel shows relative increase of mutation rate. The bottom bar is schematic repre-

sentation of alternating sequences of DNA with minor groove facing toward and away from

histones.

(TIF)

S8 Fig. (A) Somatic substitutions at CBSs with a flanking sequence of 1 kilo bp in different

POLE mutants. The expected mutation was indicated in light red color. (B) Mutation profile

around transcription start sites in different mutants. Three primary mutation types C>A

(red), C>T (blue) and T>G (green) in specific context were showed. Mutation counts were

normalized by the number of corresponding context and the abundance of each context was

displayed in the far left panel, together with mutation data in 100 bp bins (grey) is shown. (C)

Profile of mutation burden across different part of genes in different mutants. Each part of

gene was divided into 20 bins and mutation burden was calculated separately. Methylation

level of each part was showed in the top panel. (D) Mutational strand asymmetry associated

with replication in different mutants. Lower panel of each mutant shows the log2 ratio of each

pair of bars.

(TIF)

S9 Fig. Proportion of C>T mutations in the TTCGA pentanucleotide context in POLE

P286R mutants and POLE V411L mutants. Only samples with total mutations to generate

mutational contexts are included. � < 0.05, Student’s t-test.

(TIF)

S1 Table. Sample information of 53 whole genome sequencing colorectal cancer.

(XLSX)
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S2 Table. Hotspot status across in all colorectal cancer.

(XLSX)

S3 Table. Significance of enrichment of each mutation hotspot in the different POLE

mutants.

(XLSX)

S4 Table. Extended contingency table comparing enrichment of the TP53 R213� mutation

in colorectal cancer.

(XLSX)

S5 Table. Mutation counts in TTCGA sequence context

(XLSX)

S6 Table. Hotspot status across in all endometrial cancer.

(XLSX)

S7 Table. Extended contingency table comparing enrichment of the TP53 R213� mutation

in endometrial cancer.

(XLSX)

S8 Table. Summary of cohorts used in the study

(XLSX)

S9 Table. Context names of Fig 1D and Fig 3A.

(XLSX)

S10 Table. All mutations identified in POLE mutants.

(XLSX)
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