18 research outputs found
Clinical and functional effects of a deletion in a COOH-terminal lumenal loop of the skeletal muscle ryanodine receptor
We have identified a patient affected by a relatively severe form of central core disease (CCD), carrying a heterozygous deletion (amino acids 4863-4869) in the pore-forming region of the sarcoplasmic reticulum calcium release channel. The functional effect of this deletion was investigated (i) in lymphoblastoid cells from the affected patient and her mother, who was also found to harbour the mutation and (ii) in HEK293 cells expressing recombinant mutant channels. Lymphoblastoid cells carrying the RYR1 deletion exhibit an ‘unprompted' calcium release from intracellular stores, resulting in significantly smaller thapsigargin-sensitive intracellular Ca2+ stores, compared with lymphoblastoid cells from control individuals. Blocking the RYR1 with dantrolene restored the intracellular calcium stores to levels similar to those found in control cells. Single channel and [3H]ryanodine binding measurements of heterologously expressed mutant channels revealed a reduced ion conductance and loss of ryanodine binding and regulation by Ca2+. Heterologous expression of recombinant RYR1 peptides and analysis of their membrane topology demonstrate that the deleted amino acids are localized in the lumenal loop connecting membrane-spanning segments M8 and M10. We provide evidence that a deletion in the lumenal loop of RYR1alters channel function and causes CC
Homer and the ryanodine receptor
Homer proteins have recently been identified as novel high-affinity ligands that modulate ryanodine receptor (RyR) Ca2+ release channels in heart and skeletal muscle, through an EVH1 domain which binds to proline-rich regions in target proteins. Many Homer proteins can also self-associate through a coiled-coil domain that allows their multimerisation. In other tissues, especially neurons, Homer anchors proteins embedded in the surface membrane to the Ca2+ release channel in the endoplasmic reticulum and can anchor membrane or cytosolic proteins to the cytoskeleton. Although this anchoring aspect of Homer function has not been extensively investigated in muscle, there are consensus sequences for Homer binding in the RyR and on many of the proteins that it interacts with in the massive RyR ion channel complex. In this review we explore the potential of Homer to contribute to a variety of cell processes in muscle and neurons that also involve RyR channels
What we dont know about the Structure of Ryanodine receptor Calcium release channels
1. The ryanodine receptor (RyR) is the Ca2+ release channel in the sarcoplamic reticulum of skeletal and cardiac muscle and is essential for respiration and heart beat. The RyR channel releases Ca2+ from intracellular stores in a variety of other cell types, where it normally coexists with the inositiol 1,4,5-trisphosphate receptor (IP3R). The RyR and IP3R, forming a superfamily of homotetrameric ligand-gated intracellular Ca2+ channels, serve discrete functions: they can be located in independent Ca2+ stores with different activation mechanisms and can be coupled to different signalling pathways. 2. Although functional characteristics of the RyR have been investigated intensely, there remain major gaps in our knowledge about the structure of the protein, its ion-conducting pore, its ligand-binding sites and sites supporting the many protein/protein interactions that underlie the in vivo function of the channel. 3. Of particular importance are the transmembrane segments that form the membrane-spanning domain of the protein and the pore, define the conductance and selectivity of the channel and dictate the cytoplasmic and luminal domains and the overall protein structure. Hydropathy profiles predict between four and 12 transmembrane segments. One popular model shows four transmembrane segments in the C-terminal one-tenth of the protein. However, there is substantial evidence for a larger number of membrane-spanning segments located in both the C-terminal and central parts of the protein. 4. A model of the RyR pore based on the Streptomyces lividans KcsA channel structure is presented. Protein/protein interactions between the RyR and other regulatory proteins, as well as within the RyR subunit, are discussed
In vitro modulation of the cardiac ryanodine receptor activity by Homer1
The Homer protein family allows clustering and/or functional modulation of many proteins from different calcium signalling complexes including those formed by the ryanodine receptor (RyR) Ca2+ release channel in skeletal muscle and the heart. Homer1b/c and the cardiac RyR (RyR2) are strongly expressed in the heart and neurons where their interaction with each other may modulate Ca2+ signalling. However, functional interactions between Homer1b and RyR2 have been poorly defined. Our preliminary data and similar consensus binding sites for Homer in RyR2 and skeletal RyR (RyR1) proteins, led to the hypothesis that Homer may similarly regulate both RyR isoforms. Single-channel and [3H]ryanodine binding data showed that RyR2 and RyR1 activity increased to a maximum with ~50-100 nM Homer1b and fell with Homer1b > 200 nM. Homer1b (50 nM) activated RyR2 and RyR1 at all cytosolic [Ca2+]; estimated EC50 value of RyR2 diminished from ~2.8 μM Ca2+ (control) to ~1.9 μM Ca2+ in the presence of 50 nM Homer1b. Short Homer1 (lacking the coiled-coil multimerisation domain) and Homer1b similarly modulated RyR2, indicating an action through ligand binding, not mutimerisation. These actions of Homer were generally similar in RyR2 and RyR1. The strong functional interactions suggest that Homer1 is likely to be an endogenous modulator of RyR channels in the heart and neurons as well as in skeletal muscle
Agonists and antagonists of the cardiac ryanodine receptor: potential therapeutic agents?
This review addresses the potential use of the intracellular ryanodine receptor (RyR) Ca2+ release channel as a therapeutic target in heart disease. Heart disease encompasses a wide range of conditions with the major contributors to mortality and morbidity being ischaemic heart disease and heart failure (HF). In addition there are many rare, but devastating conditions, some of which are either genetically linked to the RyR and its regulatory proteins or involve drug-induced modification of the proteins. The defects in Ca2+ signalling vary with the nature of the heart disease and the stage in its progress and therefore specific corrections require different modifications of Ca2+ signalling. Compounds that activate the RyR are potential inotropic agents to increase the Ca2+ transient and strength of contraction. Compounds that reduce RyR activity are potentially useful in conditions where excess RyR activity initiates arrhythmias, or depletes the Ca2+ store, as in end stage HF. It has recently been discovered that the cardio-protective action of the drug JTV519 can be attributed partly to its ability to stabilise the interaction between the RyR and the 12.6Â kDa binding protein for the commonly used immunosuppressive drug FK506 (FKBP12.6, known as tacrolimus). This has established the credibility of the RyR as a therapeutic target. We explore the possibility that mutations causing the rare RyR-linked arrhythmias will open the door to identification of novel RyR-based therapeutic agents. The use of regulatory binding sites within the RyR complex or on its associated proteins as templates for drug design is discussed
Passive Nitrate Transport by Root Plasma Membrane Vesicles Exhibits an Acidic Optimal pH Like the H(+)-ATPase
The net initial passive flux (J(Ni)) in reconstituted plasma membrane (PM) vesicles from maize (Zea mays) root cells was measured as recently described (P. Pouliquin, J.-P. Grouzis, R. Gibrat [1999] Biophys J 76: 360–373). J(Ni) in control liposomes responded to membrane potential or to NO(3)(−) as expected from the Goldman-Hodgkin-Katz diffusion theory. J(Ni) in reconstituted PM vesicles exhibited an additional component (J(Nif)), which was saturable (K(m) for NO(3)(−) approximately 3 mm, with J(Nifmax) corresponding to 60 × 10(−9) mol m(−2) s(−1) at the native PM level) and selective (NO(3)(−) = ClO(3)(−) > Br(−) > Cl(−) = NO(2)(−); relative fluxes at 5 mm: 1:0.34:0.19). J(Nif) was totally inhibited by La(3+) and the arginine reagent phenylglyoxal. J(Nif) was voltage dependent, with an optimum voltage at 105 mV at pH 6.5. The activation energy of J(Nif) was high (129 kJ mol(−1)), close to that of the H(+)-ATPase (155 kJ mol(−1)), and J(Nif) displayed the same acidic optimal pH (pH 6.5) as that of the H(+) pump. This is the first example, to our knowledge, of a secondary transport at the plant PM with such a feature. Several properties of the NO(3)(−) uniport seem poorly compatible with that reported for plant anion channels and to be attributable instead to a classical carrier. The physiological relevance of these findings is suggested
Novel regulators of RyR Ca(2+) release channels: insight into molecular changes in genetically-linked myopathies
There are many mutations in the ryanodine receptor (RyR) Ca2+ release channel that are implicated in skeletal muscle disorders and cardiac arrhythmias. More than 80 mutations in the skeletal RyR1 have been identified and linked to malignant hyperthermia
Clinical and functional effects of a deletion in a COOH-terminal lumenal loop of the skeletal muscle ryanodine receptor
We have identified a patient affected by a relatively severe form of central core disease (CCD), carrying a heterozygous deletion (amino acids 4863-4869) in the pore-forming region of the sarcoplasmic reticulum calcium release channel. The functional effect of this deletion was investigated (i) in lymphoblastoid cells from the affected patient and her mother, who was also found to harbour the mutation and (ii) in HEK293 cells expressing recombinant mutant channels. Lymphoblastoid cells carrying the RYR1 deletion exhibit an 'unprompted' calcium release from intracellular stores, resulting in significantly smaller thapsigargin-sensitive intracellular Ca(2+) stores, compared with lymphoblastoid cells from control individuals. Blocking the RYR1 with dantrolene restored the intracellular calcium stores to levels similar to those found in control cells. Single channel and [(3)H]ryanodine binding measurements of heterologously expressed mutant channels revealed a reduced ion conductance and loss of ryanodine binding and regulation by Ca(2+). Heterologous expression of recombinant RYR1 peptides and analysis of their membrane topology demonstrate that the deleted amino acids are localized in the lumenal loop connecting membrane-spanning segments M8 and M10. We provide evidence that a deletion in the lumenal loop of RYR1 alters channel function and causes CCD
A dihydropyridine receptor alpha(1s) loop region critical for skeletal muscle contraction is intrinsically unstructured and binds to a SPRY domain of the type 1 ryanodine receptor
The II-III loop of the dihydropyridine receptor (DHPR) α1s subunit is a modulator of the ryanodine receptor (RyR1) Ca2+ release channel in vitro and is essential for skeletal muscle contraction in vivo. Despite its importance, the structure of this loo