1,076 research outputs found

    Modifications of Gait as Predictors of Natural Osteoarthritis Progression in STR/Ort Mice

    Get PDF
    OBJECTIVE: Osteoarthritis (OA) is a common chronic disease for which disease-modifying therapies are not currently available. Studies to seek new targets for slowing the progress of OA rely on mouse models, but these do not allow for longitudinal monitoring of disease development. This study was undertaken to determine whether gait can be used to measure disease severity in the STR/Ort mouse model of spontaneous OA and whether gait changes are related to OA joint pain. METHODS: Gait was monitored using a treadmill-based video system. Correlations between OA severity and gait at 3 treadmill speeds were assessed in STR/Ort mice. Gait and pain behaviors of STR/Ort mice and control CBA mice were analyzed longitudinally, with monthly assessments. RESULTS: The best speed to identify paw area changes associated with OA severity in STR/Ort mice was found to be 17 cm · seconds(−1). Paw area was modified with age in CBA and STR/Ort mice, but this began earlier in STR/Ort mice and correlated with the onset of OA at 20 weeks of age. In addition, task noncompliance appeared at 20 weeks. Surprisingly, STR/Ort mice did not show any signs of pain with OA development, even when treated with the opioid antagonist naloxone, but did exhibit normal pain behaviors in response to complete Freund's adjuvant–induced arthritis. CONCLUSION: The present results identify an animal model in which OA severity and OA pain can be studied in isolation from one another. The findings suggest that paw area and treadmill noncompliance may be useful tools to longitudinally monitor nonpainful OA development in STR/Ort mice. This will help in providing a noninvasive means of assessing new therapies to slow the progression of OA

    Surface composition and properties of Ganymede: Updates from ground-based observations with the near-infrared imaging spectrometer SINFONI/VLT/ESO

    Get PDF
    Ganymede's surface exhibits great geological diversity, with old dark terrains, expressed through the surface composition, which is known to be dominated by two constituents: H2O-ice and an unidentified darkening agent. In this paper, new investigations of the composition of Ganymede's surface at global scale are presented. The analyses are derived from the linear spectral modeling of a high spectral resolution dataset, acquired with the near-infrared (1.40–2.50 μm) ground-based integral field spectrometer SINFONI (SINgle Faint Object Near-IR Investigation) of the Very Large Telescope (VLT hereafter) located in Chile. We show that, unlike the neighboring moon Europa, photometric corrections cannot be performed using a simple Lambertian model. However, we find that the Oren-Nayar (1994) model, generalizing the Lambert's law for rough surfaces, produces excellent results. Spectral modeling confirms that Ganymede's surface composition is dominated by H2O-ice, which is predominantly crystalline, as well as a darkening agent, but it also clearly highlights the necessity of secondary species to better fit the measurements: sulfuric acid hydrate and salts, likely sulfates and chlorinated. A latitudinal gradient and a hemispherical dichotomy are the strongest spatial patterns observed for the darkening agent, the H2O-ice, and the sulfuric acid: the darkening agent is by far the major compound at the equator and mid-latitudes (≤ ± 35°N), especially on the trailing hemisphere, while the H2O-ice and the sulfuric acid are mostly located at high latitudes and on the leading hemisphere. This anti-correlation is likely a consequence of the bombardment of the constituents in the Jovian magnetosphere which are much more intense at latitudes higher than ±35°N. Furthermore, the modeling confirms that polar caps are enriched in small, fresh, H2O-ice grains (i.e. ≤50 μm) while equatorial regions are mostly composed of larger grains (i.e. ≥200 μm, up to 1 mm). Finally, the spatial distribution of the salts is neither related to the Jovian magnetospheric bombardment nor the craters. These species are mostly detected on bright grooved terrains surrounding darker areas. Endogenous processes, such as freezing of upwelling fluids going through the ice shell, may explain this distribution. In addition, a small spectral residue that might be related to brines and/or hydrated silica-bearing minerals are located in the same areas

    A homeostatic function of CXCR2 signalling in articular cartilage

    Get PDF
    Funding This work was funded by Arthritis Research UK (grants 17859, 17971, 19654), INNOCHEM EU FP6 (grant LSHB-CT-2005-51867), MRC (MR/K013076/1) and the William Harvey Research FoundationPeer reviewedPublisher PD

    Hyper-Raman scattering analysis of the vibrations in vitreous boron oxide

    Full text link
    Hyper-Raman scattering has been measured on vitreous boron oxide, vv-B2_2O3_3. This spectroscopy, complemented with Raman scattering and infrared absorption, reveals the full set of vibrations that can be observed with light. A mode analysis is performed based on the local D3h_{3h} symmetry of BO3_3 triangles and B3_3O3_3 boroxol rings. The results show that in vv-B2_2O3_3 the main spectral components can be succesfully assigned using this relatively simple model. In particular, it can be shown that the hyper-Raman boson peak arises from external modes that correspond mainly to librational motions of rigid boroxol rings.Comment: 13 pages, 11 figures, 2 table

    Spectral and stratigraphic mapping of hydrated sulfate and phyllosilicate-bearing deposits in northern Sinus Meridiani, Mars

    Get PDF
    We present detailed stratigraphic and spectral analyses that focus on a region in northern Sinus Meridiani located between 1°N to 5°N latitude and 3°W to 1°E longitude. Several stratigraphically distinct units are defined and mapped using morphologic expression, spectral properties, and superposition relationships. Previously unreported exposures of hydrated sulfates and Fe/Mg smectites are identified using MRO CRISM and MEX OMEGA near‐infrared (1.0 to 2.5 µm) spectral reflectance observations. Layered deposits with monohydrated and polyhydrated sulfate spectral signatures that occur in association with a northeast‐southwest trending valley are reexamined using highresolution CRISM, HiRISE, and CTX images. Layers that are spectrally dominated by monohydrated and polyhydrated sulfates are intercalated. The observed compositional layering implies that multiple wetting events, brine recharge, or fluctuations in evaporation rate occurred. We infer that these hydrated sulfate‐bearing layers were unconformably deposited following the extensive erosion of preexisting layered sedimentary rocks and may postdate the formation of the sulfate‐ and hematite‐bearing unit analyzed by the MER Opportunity rover. Therefore, at least two episodes of deposition separated by an unconformity occurred. Fe/Mg phyllosilicates are detected in units that predate the sulfateand hematite‐bearing unit. The presence of Fe/Mg smectite in older units indicates that the relatively low pH formation conditions inferred for the younger sulfate‐ and hematitebearing unit are not representative of the aqueous geochemical environment that prevailed during the formation and alteration of earlier materials. Sedimentary deposits indicative of a complex aqueous history that evolved over time are preserved in Sinus Meridiani, Mars
    corecore