37 research outputs found

    DEM of triaxial tests on crushable cemented sand

    Get PDF
    Using the discrete element method, triaxial simulations of cemented sand consisting of crushable particles are presented. The triaxial model used features a flexible membrane, allowing realistic deformation to occur, and cementation is modelled using inter-particle bonds. The effects of particle crushing are explored, as is the influence of cementation on the behaviour of the soil. An insight to the effects that cementation has on the degree of crushing is presented

    Discrete element modeling of the machining processes of brittle materials: recent development and future prospective

    Get PDF

    Modelling of hydraulic fracturing process by coupled discrete element and fluid dynamic methods

    Get PDF
    A three-dimensional model is presented and used to reproduce the laboratory hydraulic fracturing test performed on a thick-walled hollow cylinder limestone sample. This work aims to investigate the implications of the fluid flow on the behaviour of the micro-structure of the rock sample, including the material strength, its elastic constants and the initialisation and propagation of fractures. The replication of the laboratory test conditions has been performed based on the coupled Discrete Element Method (DEM) and Computational Fluid Dynamics scheme. The numerical results are in good agreement with the experimental data, both qualitatively and quantitatively. The developed model closely validates the overall behaviour of the laboratory sample, providing a realistic overview of the cracking propagation towards total collapse as well as complying with Lame’s theory for thick-walled cylinders. This research aims to provide some insight into designing an accurate DEM model of a fracturing rock that can be used to predict its geo-mechanical behaviour during Enhanced Oil Recovery applications

    A methodology for computing nonlinear fracture parameters for a bulging crack in a pressurised aircraft fuselage

    No full text
    A computational methodology for obtaining nonlinear fracture parameters which account for the effects of plasticity at the tips of a bulging crack in a pressurised aircraft fuselage is developed. The methodology involves a hierarchical three stage analysis (global, intermediate, and local) of the cracked fuselage, with the crack incorporated into the model at each stage. The global analysis is performed using a linear elastic shell finite element model in which the stiffeners are treated as beam elements. The geometrically nonlinear nature of the bulging phenomenon is emulated in the intermediate analysis using a geometrically nonlinear shell finite element model. The local analysis is a three-dimensional solid finite element model of the cracked skin using a hypoelastic-plastic rate formulation. Kinematic boundary conditions for each stage are obtained from the preceding stage in the hierarchy using a general mesh independent mechanism. The T*integral, which accounts for both large deformations and plasticity, is taken to be the fracture parameter characterising the severity of the conditions at the crack tip, and is evaluated from the local analysis using the Equivalent Domain Integral (EDI) method. The implementation of the EDI technique for finite deformations in shell space is also outlined. The methodology is applied to a number of example problems for which correction factors relating the nonlinear T* values to those obtained from a linear elastic stiffened shell analysis are computed. The issue of flapping is addressed by investigating the behaviour of the longitudinal stress parallel to the crack for various cases

    >

    No full text
    corecore