529 research outputs found

    Saturated hydrocarbon polymeric binder for advanced solid propellant and hybrid solid grains Quarterly report no. 2, 1 Feb. - 30 Apr. 1966

    Get PDF
    Synthesis and analysis of ethylene-neohexene copolymers with other non ketene-imine group free radicals for solid and hybrid grain propellant saturated hydrocarbon binder progra

    Hydrocarbon polymeric binder for advanced solid propellant

    Get PDF
    Various experimental factors were examined to determine the source of difficulty in an isoprene polymerization in the 5-gallon reactor which gave a non-uniform product of low functionality. It was concluded that process improvements relating to initiator and monomer purity were desirable, but that the main difficulty was in the initiator feed system. A new pumping system was installed and an analog simulation of the reactor, feed system and initiator decomposition kinetics was devised which permits the selection of initial initiator concentrations and feed rates to use to give a nearly uniform initiator concentration throughout a polymerization run. An isoprene polymerization was run in which the process improvements were implemented

    Ground State Entropy of Potts Antiferromagnets: Bounds, Series, and Monte Carlo Measurements

    Full text link
    We report several results concerning W(Λ,q)=exp(S0/kB)W(\Lambda,q)=\exp(S_0/k_B), the exponent of the ground state entropy of the Potts antiferromagnet on a lattice Λ\Lambda. First, we improve our previous rigorous lower bound on W(hc,q)W(hc,q) for the honeycomb (hc) lattice and find that it is extremely accurate; it agrees to the first eleven terms with the large-qq series for W(hc,q)W(hc,q). Second, we investigate the heteropolygonal Archimedean 4824 \cdot 8^2 lattice, derive a rigorous lower bound, on W(482,q)W(4 \cdot 8^2,q), and calculate the large-qq series for this function to O(y12)O(y^{12}) where y=1/(q1)y=1/(q-1). Remarkably, these agree exactly to all thirteen terms calculated. We also report Monte Carlo measurements, and find that these are very close to our lower bound and series. Third, we study the effect of non-nearest-neighbor couplings, focusing on the square lattice with next-nearest-neighbor bonds.Comment: 13 pages, Latex, to appear in Phys. Rev.

    Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle

    Get PDF
    Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time

    Asymptotic Limits and Zeros of Chromatic Polynomials and Ground State Entropy of Potts Antiferromagnets

    Full text link
    We study the asymptotic limiting function W(G,q)=limnP(G,q)1/nW({G},q) = \lim_{n \to \infty}P(G,q)^{1/n}, where P(G,q)P(G,q) is the chromatic polynomial for a graph GG with nn vertices. We first discuss a subtlety in the definition of W(G,q)W({G},q) resulting from the fact that at certain special points qsq_s, the following limits do not commute: limnlimqqsP(G,q)1/nlimqqslimnP(G,q)1/n\lim_{n \to \infty} \lim_{q \to q_s} P(G,q)^{1/n} \ne \lim_{q \to q_s} \lim_{n \to \infty} P(G,q)^{1/n}. We then present exact calculations of W(G,q)W({G},q) and determine the corresponding analytic structure in the complex qq plane for a number of families of graphs G{G}, including circuits, wheels, biwheels, bipyramids, and (cyclic and twisted) ladders. We study the zeros of the corresponding chromatic polynomials and prove a theorem that for certain families of graphs, all but a finite number of the zeros lie exactly on a unit circle, whose position depends on the family. Using the connection of P(G,q)P(G,q) with the zero-temperature Potts antiferromagnet, we derive a theorem concerning the maximal finite real point of non-analyticity in W(G,q)W({G},q), denoted qcq_c and apply this theorem to deduce that qc(sq)=3q_c(sq)=3 and qc(hc)=(3+5)/2q_c(hc) = (3+\sqrt{5})/2 for the square and honeycomb lattices. Finally, numerical calculations of W(hc,q)W(hc,q) and W(sq,q)W(sq,q) are presented and compared with series expansions and bounds.Comment: 33 pages, Latex, 5 postscript figures, published version; includes further comments on large-q serie

    Fisher zeros of the Q-state Potts model in the complex temperature plane for nonzero external magnetic field

    Full text link
    The microcanonical transfer matrix is used to study the distribution of the Fisher zeros of the Q>2Q>2 Potts models in the complex temperature plane with nonzero external magnetic field HqH_q. Unlike the Ising model for Hq0H_q\ne0 which has only a non-physical critical point (the Fisher edge singularity), the Q>2Q>2 Potts models have physical critical points for Hq<0H_q<0 as well as the Fisher edge singularities for Hq>0H_q>0. For Hq<0H_q<0 the cross-over of the Fisher zeros of the QQ-state Potts model into those of the (Q1Q-1)-state Potts model is discussed, and the critical line of the three-state Potts ferromagnet is determined. For Hq>0H_q>0 we investigate the edge singularity for finite lattices and compare our results with high-field, low-temperature series expansion of Enting. For 3Q63\le Q\le6 we find that the specific heat, magnetization, susceptibility, and the density of zeros diverge at the Fisher edge singularity with exponents αe\alpha_e, βe\beta_e, and γe\gamma_e which satisfy the scaling law αe+2βe+γe=2\alpha_e+2\beta_e+\gamma_e=2.Comment: 24 pages, 7 figures, RevTeX, submitted to Physical Review

    Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions

    Get PDF
    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph

    Viruses Associated with Ovarian Degeneration in Apis mellifera L. Queens

    Get PDF
    Queen fecundity is a critical issue for the health of honeybee (Apis mellifera L.) colonies, as she is the only reproductive female in the colony and responsible for the constant renewal of the worker bee population. Any factor affecting the queen's fecundity will stagnate colony development, increasing its susceptibility to opportunistic pathogens. We discovered a pathology affecting the ovaries, characterized by a yellow discoloration concentrated in the apex of the ovaries resulting from degenerative lesions in the follicles. In extreme cases, marked by intense discoloration, the majority of the ovarioles were affected and these cases were universally associated with egg-laying deficiencies in the queens. Microscopic examination of the degenerated follicles showed extensive paracrystal lattices of 30 nm icosahedral viral particles. A cDNA library from degenerated ovaries contained a high frequency of deformed wing virus (DWV) and Varroa destructor virus 1 (VDV-1) sequences, two common and closely related honeybee Iflaviruses. These could also be identified by in situ hybridization in various parts of the ovary. A large-scale survey for 10 distinct honeybee viruses showed that DWV and VDV-1 were by far the most prevalent honeybee viruses in queen populations, with distinctly higher prevalence in mated queens (100% and 67%, respectively for DWV and VDV-1) than in virgin queens (37% and 0%, respectively). Since very high viral titres could be recorded in the ovaries and abdomens of both functional and deficient queens, no significant correlation could be made between viral titre and ovarian degeneration or egg-laying deficiency among the wider population of queens. Although our data suggest that DWV and VDV-1 have a role in extreme cases of ovarian degeneration, infection of the ovaries by these viruses does not necessarily result in ovarian degeneration, even at high titres, and additional factors are likely to be involved in this pathology
    corecore