3,847 research outputs found

    QUASAT: An orbiting very long baseline interferometer program using large space antenna systems

    Get PDF
    QUASAT, which stands for QUASAR SATELLITE, is the name given to a new mission being studied by NASA. The QUASAT mission concept involves a free flying Earth orbiting large radio telescope, which will observe astronomical radio sources simultaneously with ground radio telescopes. The primary goal of QUASAT is to provide a system capable of collecting radio frequency data which will lead to a better understanding of extremely high energy events taking place in a variety of celestial objects including quasars, galactic nuclei, interstellar masers, radio stars and pulsars. QUASAT's unique scientific contribution will be the increased resolution in the emission brightness profile maps of the celestial objects

    Fast algorithm for border bases of Artinian Gorenstein algebras

    Get PDF
    Given a multi-index sequence σ\sigma, we present a new efficient algorithm to compute generators of the linear recurrence relations between the terms of σ\sigma. We transform this problem into an algebraic one, by identifying multi-index sequences, multivariate formal power series and linear functionals on the ring of multivariate polynomials. In this setting, the recurrence relations are the elements of the kerne lII\sigma of the Hankel operator $H$\sigma associated to σ\sigma. We describe the correspondence between multi-index sequences with a Hankel operator of finite rank and Artinian Gorenstein Algebras. We show how the algebraic structure of the Artinian Gorenstein algebra AA\sigmaassociatedtothesequence associated to the sequence \sigma yields the structure of the terms $\sigma\alphaforall for all α\alpha \in N n.Thisstructureisexplicitlygivenbyaborderbasisof. This structure is explicitly given by a border basis of Aσ\sigma,whichispresentedasaquotientofthepolynomialring, which is presented as a quotient of the polynomial ring K[x 1 ,. .. , xn]bythekernel] by the kernel Iσ\sigmaoftheHankeloperator of the Hankel operator Hσ\sigma.Thealgorithmprovidesgeneratorsof. The algorithm provides generators of Iσ\sigmaconstitutingaborderbasis,pairwiseorthogonalbasesof constituting a border basis, pairwise orthogonal bases of Aσ\sigma$ and the tables of multiplication by the variables in these bases. It is an extension of Berlekamp-Massey-Sakata (BMS) algorithm, with improved complexity bounds. We present applications of the method to different problems such as the decomposition of functions into weighted sums of exponential functions, sparse interpolation, fast decoding of algebraic codes, computing the vanishing ideal of points, and tensor decomposition. Some benchmarks illustrate the practical behavior of the algorithm

    The evolution of electron overdensities in magnetic fields

    Get PDF
    When a neutral gas impinges on a stationary magnetized plasma an enhancement in the ionization rate occurs when the neutrals exceed a threshold velocity. This is commonly known as the critical ionization velocity effect. This process has two distinct timescales: an ion–neutral collision time and electron acceleration time. We investigate the energization of an ensemble of electrons by their self-electric field in an applied magnetic field. The evolution of the electrons is simulated under different magnetic field and density conditions. It is found that electrons can be accelerated to speeds capable of electron impact ionization for certain conditions. In the magnetically dominated case the energy distribution of the excited electrons shows that typically 1% of the electron population can exceed the initial electrostatic potential associated with the unbalanced ensemble of electrons

    A practical method for calculating thermally-induced stresses in pile foundations used as heat exchangers

    Get PDF
    Thermo-active piles are capable of providing both structural stability as foundations and low carbon heating and cooling as ground source heat exchangers. When subjected to heating or cooling, the soil surrounding the pile restricts its expansion or contraction, giving rise to thermally-induced axial stresses, which need to be considered during design. Previous numerical studies often assume axisymmetry of the problem and/or a simplification of the heating or cooling mechanism of the pile. To simulate accurately the development of thermallyinduced axial stresses, this paper presents a computational study comprising three dimensional fully coupled thermo-hydro-mechanical finite element analyses conducted using the Imperial College Finite Element Program (ICFEP), where the heating of a thermo-active pile is simulated by prescribing a flow of hot water through the heat exchanger pipes within the pile. The effects of pipe arrangement on thermally-induced axial stresses are investigated by considering three different cases – single U loop, double U-loop and triple U-loop. Since threedimensional analyses are computationally expensive, a simplified method using a combination of two-dimensional analyses is proposed to estimate the thermally-induced axial stresses, which is subsequently validated and shown to yield accurate results

    A sensitivity study on the mechanical properties of interface elements adopted in finite element analyses to simulate the interaction between soil and laterally loaded piles

    Get PDF
    An increasing number of offshore energy structures have been built recently on driven piles, ranging from jack- et piles with typical length-to-diameter (L/D) ratios of 10-40 to monopiles with far lower L/D ratios. The load-displacement behaviour of these foundations can be investigated by means of Finite Element (FE) analyses, for instance following the design methodology developed by the PISA Joint Industry Project (JIP). A challenging aspect of the modelling, for piles loaded either axially or laterally, is the simulation of the behaviour at the soil-pile interface with the adoption of suitable formulations for the interface elements and with representative mechanical properties. This paper presents a sensitivity study conducted on both the elastic and plastic properties of interface elements adopted in FE analyses of laterally loaded piles driven in chalk. The study benefited from the extensive field and laboratory test results collected during the ALPACA JIP and the corresponding pile tests. The aim of the paper is to provide guidance for numerical modelling on the selection of the most appropriate mechanical properties of interface elements to be used in the analyses of soil-pile interaction under lateral loading

    Gas-plasma compressional wave coupling by momentum transfer

    Get PDF
    Pressure disturbances in a gas-plasma mixed fluid will result in a hybrid response, with magnetosonic plasma waves coupled to acoustic waves in the neutral gas. In the analytical and numerical treatment presented here, we demonstrate the evolution of the total fluid medium response under a variety of conditions, with the gas-plasma linkage achieved by additional coupling terms in the momentum equations of each species. The significance of this treatment lies in the consideration of density perturbations in such fluids: there is no 'pure' mode response, only a collective one in which elements of the characteristics of each component are present. For example, an initially isotropic gas sound wave can trigger an anisotropic magnetic response in the plasma, with the character of each being blended in the global evolution. Hence sound waves do not remain wholly isotropic, and magnetic responses are less constrained by pure magnetoplasma dynamics

    Predictive modelling of thermo-active tunnels in London Clay

    Get PDF
    Thermo-active structures are underground facilities which enable the exchange of thermal energy between the ground and the overlying buildings, thus providing renewable means of space heating and cooling. Although this technology is becoming increasingly popular, the behaviour of geotechnical structures under additional thermal loading is still not fully understood. This paper focuses on the use of underground tunnels as thermo-active structures and explains their behaviour through a series of finite element analyses based on an existing case study of isothermal tunnels in London Clay. The bespoke finite element codeI CFEP is adopted which is capable of simulating the fully coupled thermo-hydro-mechanical behaviour of porous materials. The complex coupled interactions between the tunnel and the surrounding soil are explored bycomparing results from selected types of coupledand uncoupled simulations. It is demonstratedthat: (1) the thermally-induceddeformation of the tunnel and the ground are more critical design aspects than the thermally-induced forces in the tunnel lining, and (2) the modelling approach in terms of the type of analysis, as well as the assumed permeability of the tunnel lining, have a significant effect on the computed tunnel response and,hence, must be chosen carefull

    Finite element modelling of heat transfer in ground source energy systems with heat exchanger pipes

    Get PDF
    Ground source energy systems (GSES) utilise low enthalpy geothermal energy and have been recognised as an efficient means of providing low carbon space heating and cooling. This study focuses on GSES where the exchange of heat between the ground and the building is achieved by circulating a fluid through heat exchanger pipes. Although numerical analysis is a powerful tool for exploring the performance of such systems, simulating the highly advective flows inside the heat exchanger pipes can be problematic. This paper presents an efficient approach for modelling these systems using the finite element method (FEM). The pipes are discretised with line elements and the conductive-advective heat flux along them is solved using the Petrov-Galerkin FEM instead of the conventional Galerkin FEM. Following extensive numerical studies, a modelling approach for simulating heat exchanger pipes, which employs line elements and a special material with enhanced thermal properties, is developed. The modelling approach is then adopted in three-dimensional simulations of two thermal response tests, with an excellent match between the computed and measured temperatures being obtained
    corecore