5,110 research outputs found

    Integrated carbon dioxide reduction system feasibility study, part I Final report

    Get PDF
    Method for physical recovery of carbon dioxide from space cabin atmosphere and chemical recovery of metabolic oxyge

    Improved head-controlled TV system produces high-quality remote image

    Get PDF
    Manipulator operator uses an improved resolution tv camera/monitor positioning system to view the remote handling and processing of reactive, flammable, explosive, or contaminated materials. The pan and tilt motions of the camera and monitor are slaved to follow the corresponding motions of the operators head

    Improved electromechanical master-slave manipulator

    Get PDF
    Electric master-slave manipulator uses force multiplication and allows the operator to remotely control the slave arm. Both the master and slave arms execute seven distinct motions by a specially designed force-reflecting servo having a one to one correspondence between the motion at the master and slave

    QUASAT: An orbiting very long baseline interferometer program using large space antenna systems

    Get PDF
    QUASAT, which stands for QUASAR SATELLITE, is the name given to a new mission being studied by NASA. The QUASAT mission concept involves a free flying Earth orbiting large radio telescope, which will observe astronomical radio sources simultaneously with ground radio telescopes. The primary goal of QUASAT is to provide a system capable of collecting radio frequency data which will lead to a better understanding of extremely high energy events taking place in a variety of celestial objects including quasars, galactic nuclei, interstellar masers, radio stars and pulsars. QUASAT's unique scientific contribution will be the increased resolution in the emission brightness profile maps of the celestial objects

    Energy benefits and emergent space use patterns of an empirically parameterized model of memory-based patch selection

    Get PDF
    Many species frequently return to previously visited foraging sites. This bias towards familiar areas suggests that remembering information from past experience is beneficial. Such a memory-based foraging strategy has also been hypothesized to give rise to restricted space use (i.e. a home range). Nonetheless, the benefits of empirically derived memory-based foraging tactics and the extent to which they give rise to restricted space use patterns are still relatively unknown. Using a combination of stochastic agent-based simulations and deterministic integro-difference equations, we developed an adaptive link (based on energy gains as a foraging currency) between memory-based patch selection and its resulting spatial distribution. We used a memory-based foraging model developed and parameterized with patch selection data of free-ranging bison Bison bison in Prince Albert National Park, Canada. Relative to random use of food patches, simulated foragers using both spatial and attribute memory are more efficient, particularly in landscapes with clumped resources. However, a certain amount of random patch use is necessary to avoid frequent returns to relatively poor-quality patches, or avoid being caught in a relatively poor quality area of the landscape. Notably, in landscapes with clumped resources, simulated foragers that kept a reference point of the quality of recently visited patches, and returned to previously visited patches when local patch quality was poorer than the reference point, experienced higher energy gains compared to random patch use. Furthermore, the model of memory-based foraging resulted in restricted space use in simulated landscapes and replicated the restricted space use observed in free-ranging bison reasonably well. Our work demonstrates the adaptive value of spatial and attribute memory in heterogeneous landscapes, and how home ranges can be a byproduct of non-omniscient foragers using past experience to minimize temporal variation in energy gains

    Small scale energy release driven by supergranular flows on the quiet Sun

    Get PDF
    In this article we present data and modelling for the quiet Sun that strongly suggest a ubiquitous small-scale atmospheric heating mechanism that is driven solely by converging supergranular flows. A possible energy source for such events is the power transfer to the plasma via the work done on the magnetic field by photospheric convective flows, which exert drag of the footpoints of magnetic structures. In this paper we present evidence of small scale energy release events driven directly by the hydrodynamic forces that act on the magnetic elements in the photosphere, as a result of supergranular scale flows. We show strong spatial and temporal correlation between quiet Sun soft X-ray emission (from <i>Yohkoh</i> and <i>SOHO</i> MDI-derived flux removal events driven by deduced photospheric flows. We also present a simple model of heating generated by flux submergence, based on particle acceleration by converging magnetic mirrors. In the near future, high resolution soft X-ray images from XRT on the <i>Hinode</i> satellite will allow definitive, quantitative verification of our results

    Experimental investigations of bolted segmental grey cast iron lining behaviour

    Get PDF
    The need for the research reported in this paper was driven by the Crossrail project in London for which new tunnels were constructed close to numerous existing operational tunnels of the London Underground (LU) network. This research is based on experimental work conducted on half-scale grey cast iron (GCI) tunnel lining segments with chemical composition similar to the Victorian age GCI segments in the LU network. This paper discusses the deformation behaviour of the bolted segmental lining under the influence of factors such as overburden pressure, bolt preload and presence of grommets at small distortions. The measured behaviour of the segmental lining is compared against the calculated response of a continuous lining based on the assumption of elasticity. The industry practice for tunnel lining assessment is to calculate the induced bending moment in the tunnel lining using an elastic continuum model, while adopting a reduced lining stiffness to take into account the presence of the joints. Case studies have recorded that both loosening and tightening of lining bolts have been used as mitigation measures to reduce the impact of new tunnel excavations on existing GCI tunnels. The experimental work on the half-scale GCI lining has shown that a bolted segmental lining behaves as a continuous ring under small distortions imposed when subjected to hoop forces relevant to the depth of burial of LU tunnels. In the presence of hoop force, joint opening was minimal and the magnitude of preload in the bolts had little impact on the behaviour of the lining. It is therefore concluded that disturbance of the bolts in existing tunnels is not recommended as a mitigation measure as in addition to being ineffective it is both time consuming and introduces the risk of damaging the tunnel lining flanges
    corecore