2,492 research outputs found
Prognostic significance of short-term blood pressure variability in acute stroke
Background and Purpose—
Blood pressure variability (BPV) may be an important prognostic factor acutely after stroke. This review investigated the existing evidence for the effect of BPV on outcome after stroke, also considering BPV measurement techniques and definitions.
Methods—
A literature search was performed according to a prespecified study protocol. Two reviewers independently assessed study eligibility and quality. Where appropriate, meta-analyses were performed to assess the effect of BPV on poor functional outcome.
Results—
Eighteen studies from 1359 identified citations were included. Seven studies were included in a meta-analysis for the effect of BPV on functional outcome (death or disability). Systolic BPV was significantly associated with poor functional outcome: pooled odds ratio per 10-mm Hg increment, 1.2; confidence interval (1.1–1.3). A descriptive review of included studies also supports these findings, and in addition, it suggests that systolic BPV may be associated with increased risk of intracranial hemorrhage in those treated with thrombolytic therapy.
Conclusions—
This systematic review and meta-analysis suggest that greater systolic BPV, measured early from ischemic stroke or intracerebral hemorrhage onset, is associated with poor longer-term functional outcome. Future prospective studies should investigate how best to measure and define BPV in acute stroke, as well as to determine its prognostic significance.
</jats:sec
Adaptive feedback analysis and control of programmable stimuli for assessment of cerebrovascular function
The assessment of cerebrovascular regulatory mechanisms often requires flexibly controlled and precisely timed changes in arterial blood pressure (ABP) and/or inspired CO2. In this study, a new system for inducing variations in mean ABP was designed, implemented and tested using programmable sequences and programmable controls to induce pressure changes through bilateral thigh cuffs. The system is also integrated with a computer-controlled switch to select air or a CO2/air mixture to be provided via a face mask. Adaptive feedback control of a pressure generator was required to meet stringent specifications for fast changes, and accuracy in timing and pressure levels applied by the thigh cuffs. The implemented system consists of a PC-based signal analysis/control unit, a pressure control unit and a CO2/air control unit. Initial evaluations were carried out to compare the cuff pressure control performances between adaptive and non-adaptive control configurations. Results show that the adaptive control method can reduce the mean error in sustaining target pressure by 99.57 % and reduce the transient time in pressure increases by 45.21 %. The system has proven a highly effective tool in ongoing research on brain blood flow control
Closed-Loop, Open-Source Electrophysiology
Multiple extracellular microelectrodes (multi-electrode arrays, or MEAs) effectively record rapidly varying neural signals, and can also be used for electrical stimulation. Multi-electrode recording can serve as artificial output (efferents) from a neural system, while complex spatially and temporally targeted stimulation can serve as artificial input (afferents) to the neuronal network. Multi-unit or local field potential (LFP) recordings can not only be used to control real world artifacts, such as prostheses, computers or robots, but can also trigger or alter subsequent stimulation. Real-time feedback stimulation may serve to modulate or normalize aberrant neural activity, to induce plasticity, or to serve as artificial sensory input. Despite promising closed-loop applications, commercial electrophysiology systems do not yet take advantage of the bidirectional capabilities of multi-electrodes, especially for use in freely moving animals. We addressed this lack of tools for closing the loop with NeuroRighter, an open-source system including recording hardware, stimulation hardware, and control software with a graphical user interface. The integrated system is capable of multi-electrode recording and simultaneous patterned microstimulation (triggered by recordings) with minimal stimulation artifact. The potential applications of closed-loop systems as research tools and clinical treatments are broad; we provide one example where epileptic activity recorded by a multi-electrode probe is used to trigger targeted stimulation, via that probe, to freely moving rodents
A Low-Cost Multielectrode System for Data Acquisition Enabling Real-Time Closed-Loop Processing with Rapid Recovery from Stimulation Artifacts
Commercially available data acquisition systems for multielectrode recording from freely moving animals are expensive, often rely on proprietary software, and do not provide detailed, modifiable circuit schematics. When used in conjunction with electrical stimulation, they are prone to prolonged, saturating stimulation artifacts that prevent the recording of short-latency evoked responses. Yet electrical stimulation is integral to many experimental designs, and critical for emerging brain-computer interfacing and neuroprosthetic applications. To address these issues, we developed an easy-to-use, modifiable, and inexpensive system for multielectrode neural recording and stimulation. Setup costs are less than US$10,000 for 64 channels, an order of magnitude lower than comparable commercial systems. Unlike commercial equipment, the system recovers rapidly from stimulation and allows short-latency action potentials (<1 ms post-stimulus) to be detected, facilitating closed-loop applications and exposing neural activity that would otherwise remain hidden. To illustrate this capability, evoked activity from microstimulation of the rodent hippocampus is presented. System noise levels are similar to existing platforms, and extracellular action potentials and local field potentials can be recorded simultaneously. The system is modular, in banks of 16 channels, and flexible in usage: while primarily designed for in vivo use, it can be combined with commercial preamplifiers to record from in vitro multielectrode arrays. The system's open-source control software, NeuroRighter, is implemented in C#, with an easy-to-use graphical interface. As C# functions in a managed code environment, which may impact performance, analysis was conducted to ensure comparable speed to C++ for this application. Hardware schematics, layout files, and software are freely available. Since maintaining wired headstage connections with freely moving animals is difficult, we describe a new method of electrode-headstage coupling using neodymium magnets
Detection of impaired cerebral autoregulation improves by increasing arterial blood pressure variability
Although the assessment of dynamic cerebral autoregulation (CA) based on measurements of spontaneous fluctuations in arterial blood pressure (ABP) and cerebral blood flow (CBF) is a convenient and much used method, there remains uncertainty about its reliability. We tested the effects of increasing ABP variability, provoked by a modification of the thigh cuff method, on the ability of the autoregulation index to discriminate between normal and impaired CA, using hypercapnia as a surrogate for dynamic CA impairment. In 30 healthy volunteers, ABP (Finapres) and CBF velocity (CBFV, transcranial Doppler) were recorded at rest and during 5% CO(2) breathing, with and without pseudo-random sequence inflation and deflation of bilateral thigh cuffs. The application of thigh cuffs increased ABP and CBFV variabilities and was not associated with a distortion of the CBFV step response estimates for both normocapnic and hypercapnic conditions (P=0.59 and P=0.96, respectively). Sensitivity and specificity of CA impairment detection were improved with the thigh cuff method, with the area under the receiver-operator curve increasing from 0.746 to 0.859 (P=0.031). We conclude that the new method is a safe, efficient, and appealing alternative to currently existing assessment methods for the investigation of the status of CA
How to Culture, Record and Stimulate Neuronal Networks on Micro-electrode Arrays (MEAs)
For the last century, many neuroscientists around the world have dedicated their lives to understanding how neuronal networks work and why they stop working in various diseases. Studies have included neuropathological observation, fluorescent microscopy with genetic labeling, and intracellular recording in both dissociated neurons and slice preparations. This protocol discusses another technology, which involves growing dissociated neuronal cultures on micro-electrode arrays (also called multi-electrode arrays, MEAs)
Improving Impedance of Implantable Microwire Multi-Electrode Arrays by Ultrasonic Electroplating of Durable Platinum Black
Implantable microelectrode arrays (MEAs) have been a boon for neural stimulation and recording experiments. Commercially available MEAs have high impedances, due to their low surface area and small tip diameters, which are suitable for recording single unit activity. Lowering the electrode impedance, but preserving the small diameter, would provide a number of advantages, including reduced stimulation voltages, reduced stimulation artifacts and improved signal-to-noise ratio. Impedance reductions can be achieved by electroplating the MEAs with platinum (Pt) black, which increases the surface area but has little effect on the physical extent of the electrodes. However, because of the low durability of Pt black plating, this method has not been popular for chronic use. Sonicoplating (i.e. electroplating under ultrasonic agitation) has been shown to improve the durability of Pt black on the base metals of macro-electrodes used for cyclic voltammetry. This method has not previously been characterized for MEAs used in chronic neural implants. We show here that sonicoplating can lower the impedances of microwire multi-electrode arrays (MMEA) by an order of magnitude or more (depending on the time and voltage of electroplating), with better durability compared to pulsed plating or traditional DC methods. We also show the improved stimulation and recording performance that can be achieved in an in vivo implantation study with the sonicoplated low-impedance MMEAs, compared to high-impedance unplated electrodes
Randomised controlled trial of a Calcium Channel or Angiotensin Converting Enzyme Inhibitor/Angiotensin Receptor Blocker Regime to Reduce Blood Pressure Variability following Ischaemic Stroke (CAARBS): a protocol for a feasibility study
Introduction Raised blood pressure (BP) is common after stroke and is associated with a poor prognosis, yet trials of BP lowering in the immediate poststroke period have not demonstrated a benefit. One possible explanation for this may be that BP variability (BPV) rather than absolute levels predicts outcome, as BPV is increased after stroke and is associated with poor outcomes. Furthermore, there is evidence of distinct antihypertensive class effects on BPV despite similar BP-lowering effects. However, whether BPV in the immediate poststroke period is a therapeutic target has not been prospectively investigated. The objectives of this trial are to assess the feasibility and safety of recruiting patients following an acute ischaemic stroke or transient ischaemic attack (TIA) to an interventional randomised controlled trial comparing the effects of two different antihypertensive drug classes on BPV. Secondary exploratory objectives are to assess if different therapeutic strategies have diverse effects on levels of BPV and if this has an impact on outcomes. Methods 150 adult patients with first-ever ischaemic stroke or TIA who require antihypertensive therapy for secondary prevention will be recruited within 7 days of the event from stroke services across three sites. After baseline assessments they will be randomly assigned to treatment with a calcium channel blocker or ACE inhibitor/angiotensin receptor blocker-based regimen and followed up for a period of three months. Ethics and dissemination Ethical and regulatory approvals have been granted. Dissemination is planned via publication in peer-reviewed medical journals and presentation at relevant conferences. Trial registration number ISRCTN10853487
- …