170 research outputs found

    L’éternelle jeunesse des Stars

    Get PDF

    Indoleamine 2 3-dioxygenase knockout limits angiotensin II-induced aneurysm in low density lipoprotein receptor-deficient mice fed with high fat diet.

    Get PDF
    AIMS: Abdominal aortic aneurysm (AAA) is an age-associated disease characterized by chronic inflammation, vascular cell apoptosis and metalloproteinase-mediated extracellular matrix degradation. Despite considerable progress in identifying targets involved in these processes, therapeutic approaches aiming to reduce aneurysm growth and rupture are still scarce. Indoleamine 2-3 dioxygenase 1 (IDO) is the first and rate-limiting enzyme involved in the conversion of tryptophan (Trp) into kynurenine (Kyn) pathway. In this study, we investigated the role of IDO in two different models of AAA in mice. METHODS AND RESULTS: Mice with deficiencies in both low density receptor-deficient (Ldlr-/-) and IDO (Ldlr-/-Ido1-/-) were generated by cross-breeding Ido1-/- mice with Ldlr-/-mice. To induce aneurysm, these mice were infused with angiotensin II (Ang II) (1000 ng/min/kg) and fed with high fat diet (HFD) during 28 days. AAAs were present in almost all Ldlr-/- infused with AngII, but only in 50% of Ldlr-/-Ido1-/- mice. Immunohistochemistry at an early time point (day 7) revealed no changes in macrophage and T lymphocyte infiltration within the vessel wall, but showed reduced apoptosis, as assessed by TUNEL assay, and increased α-actin staining within the media of Ldlr-/-Ido1-/- mice, suggesting enhanced survival of vascular smooth muscle cells (VSMCs) in the absence of IDO. In another model of elastase-induced AAA in C57Bl/6 mice, IDO deficiency had no effect on aneurysm formation. CONCLUSION: Our study showed that the knockout of IDO prevented VSMC apoptosis in AngII -treated Ldlr-/- mice fed with HFD, suggesting a detrimental role of IDO in AAA formation and thus would be an important target for the treatment of aneurysm

    Limited Macrophage Positional Dynamics in Progressing or Regressing Murine Atherosclerotic PlaquesBrief Report

    Get PDF
    Objective Macrophages play important roles in the pathogenesis of atherosclerosis, but their dynamics within plaques remain obscure. We aimed to quantify macrophage positional dynamics within progressing and regressing atherosclerotic plaques. Approach and Results In a stable intravital preparation, large asymmetrical foamy macrophages in the intima of carotid artery plaques were sessile, but smaller rounded cells nearer plaque margins, possibly newly recruited monocytes, mobilized laterally along plaque borders. Thus, to test macrophage dynamics in plaques over a longer period of time in progressing and regressing disease, we quantified displacement of nondegradable phagocytic particles within macrophages for up to 6 weeks. In progressing plaques, macrophage-associated particles appeared to mobilize to deeper layers in plaque, whereas in regressing plaques, the label was persistently located near the lumen. By measuring the distance of the particles from the floor of the plaque, we discovered that particles remained at the same distance from the floor regardless of plaque progression or regression. The apparent deeper penetration of labeled cells in progressing conditions could be attributed to monocyte recruitment that generated new superficial layers of macrophages over the labeled phagocytes. Conclusion: s Although there may be individual exceptions, as a population, newly differentiated macrophages fail to penetrate significantly deeper than the limited depth they reside on initial entry, regardless of plaque progression, or regression. These limited dynamics may prevent macrophages from escaping areas with unfavorable conditions (such as hypoxia) and pose a challenge for newly recruited macrophages to clear debris through efferocytosis deep within plaque

    The Dendritic Cell Receptor DNGR-1 Promotes the Development of Atherosclerosis in Mice.

    Get PDF
    RATIONALE: Necrotic core formation during the development of atherosclerosis is associated with a chronic inflammatory response and promotes accelerated plaque development and instability. However, the molecular links between necrosis and the development of atherosclerosis are not completely understood. Clec9a (C-type lectin receptor) or DNGR-1 (dendritic cell NK lectin group receptor-1) is preferentially expressed by the CD8α+ subset of dendritic cells (CD8α+ DCs) and is involved in sensing necrotic cells. We hypothesized that sensing of necrotic cells by DNGR-1 plays a determinant role in the inflammatory response of atherosclerosis. OBJECTIVE: We sought to address the impact of total, bone marrow-restricted, or CD8α+ DC-restricted deletion of DNGR-1 on atherosclerosis development. METHODS AND RESULTS: We show that total absence of DNGR-1 in Apoe (apolipoprotein e)-deficient mice (Apoe-/-) and bone marrow-restricted deletion of DNGR-1 in Ldlr (low-density lipoprotein receptor)-deficient mice (Ldlr-/-) significantly reduce inflammatory cell content within arterial plaques and limit atherosclerosis development in a context of moderate hypercholesterolemia. This is associated with a significant increase of the expression of interleukin-10 (IL-10). The atheroprotective effect of DNGR-1 deletion is completely abrogated in the absence of bone marrow-derived IL-10. Furthermore, a specific deletion of DNGR-1 in CD8α+ DCs significantly increases IL-10 expression, reduces macrophage and T-cell contents within the lesions, and limits the development of atherosclerosis. CONCLUSIONS: Our results unravel a new role of DNGR-1 in regulating vascular inflammation and atherosclerosis and potentially identify a new target for disease modulation

    Genetic and Pharmacological Inhibition of TREM-1 Limits the Development of Experimental Atherosclerosis.

    Get PDF
    BACKGROUND: Innate immune responses activated through myeloid cells contribute to the initiation, progression, and complications of atherosclerosis in experimental models. However, the critical upstream pathways that link innate immune activation to foam cell formation are still poorly identified. OBJECTIVES: This study sought to investigate the hypothesis that activation of the triggering receptor expressed on myeloid cells (TREM-1) plays a determinant role in macrophage atherogenic responses. METHODS: After genetically invalidating Trem-1 in chimeric Ldlr-/-Trem-1-/- mice and double knockout ApoE-/-Trem-1-/- mice, we pharmacologically inhibited Trem-1 using LR12 peptide. RESULTS: Ldlr-/- mice reconstituted with bone marrow deficient for Trem-1 (Trem-1-/-) showed a strong reduction of atherosclerotic plaque size in both the aortic sinus and the thoracoabdominal aorta, and were less inflammatory compared to plaques of Trem-1+/+ chimeric mice. Genetic invalidation of Trem-1 led to alteration of monocyte recruitment into atherosclerotic lesions and inhibited toll-like receptor 4 (TLR 4)-initiated proinflammatory macrophage responses. We identified a critical role for Trem-1 in the upregulation of cluster of differentiation 36 (CD36), thereby promoting the formation of inflammatory foam cells. Genetic invalidation of Trem-1 in ApoE-/-/Trem-1-/- mice or pharmacological blockade of Trem-1 in ApoE-/- mice using LR-12 peptide also significantly reduced the development of atherosclerosis throughout the vascular tree, and lessened plaque inflammation. TREM-1 was expressed in human atherosclerotic lesions, mainly in lipid-rich areas with significantly higher levels of expression in atheromatous than in fibrous plaques. CONCLUSIONS: We identified TREM-1 as a major upstream proatherogenic receptor. We propose that TREM-1 activation orchestrates monocyte/macrophage proinflammatory responses and foam cell formation through coordinated and combined activation of CD36 and TLR4. Blockade of TREM-1 signaling may constitute an attractive novel and double-hit approach for the treatment of atherosclerosis

    Impact of Macrophage Inflammatory Protein-1α Deficiency on Atherosclerotic Lesion Formation, Hepatic Steatosis, and Adipose Tissue Expansion

    Get PDF
    Macrophage inflammatory protein-1α (CCL3) plays a well-known role in infectious and viral diseases; however, its contribution to atherosclerotic lesion formation and lipid metabolism has not been determined. Low density lipoprotein receptor deficient (LDLR−/−) mice were transplanted with bone marrow from CCL3−/− or C57BL/6 wild type donors. After 6 and 12 weeks on western diet (WD), recipients of CCL3−/− marrow demonstrated lower plasma cholesterol and triglyceride concentrations compared to recipients of C57BL/6 marrow. Atherosclerotic lesion area was significantly lower in female CCL3−/− recipients after 6 weeks and in male CCL3−/− recipients after 12 weeks of WD feeding (P<0.05). Surprisingly, male CCL3−/− recipients had a 50% decrease in adipose tissue mass after WD-feeding, and plasma insulin, and leptin levels were also significantly lower. These results were specific to CCL3, as LDLR−/− recipients of monocyte chemoattractant protein−/− (CCL2) marrow were not protected from the metabolic consequences of high fat feeding. Despite these improvements in LDLR−/− recipients of CCL3−/− marrow in the bone marrow transplantation (BMT) model, double knockout mice, globally deficient in both proteins, did not have decreased body weight, plasma lipids, or atherosclerosis compared with LDLR−/− controls. Finally, there were no differences in myeloid progenitors or leukocyte populations, indicating that changes in body weight and plasma lipids in CCL3−/− recipients was not due to differences in hematopoiesis. Taken together, these data implicate a role for CCL3 in lipid metabolism in hyperlipidemic mice following hematopoietic reconstitution

    Mild dyslipidemia accelerates tumorigenesis through expansion of Ly6Chi monocytes and differentiation to pro-angiogenic myeloid cells

    Full text link
    Cancer and cardiovascular disease (CVD) share common risk factors such as dyslipidemia, obesity and inflammation. However, the role of pro-atherogenic environment and its associated low-grade inflammation in tumor progression remains underexplored. Here we show that feeding C57BL/6J mice with a non-obesogenic high fat high cholesterol diet (HFHCD) for two weeks to induce mild dyslipidemia, increases the pool of circulating Ly6Chi monocytes available for initial melanoma development, in an IL-1β-dependent manner. Descendants of circulating myeloid cells, which accumulate in the tumor microenvironment of mice under HFHCD, heighten pro-angiogenic and immunosuppressive activities locally. Limiting myeloid cell accumulation or targeting VEGF-A production by myeloid cells decrease HFHCD-induced tumor growth acceleration. Reverting the HFHCD to a chow diet at the time of tumor implantation protects against tumor growth. Together, these data shed light on cross-disease communication between cardiovascular pathologies and cancer

    Modelling ageing and age-related disease

    Get PDF
    An increased lifespan comes with an associated increase in disease incidence, and is the major risk factor for age-related diseases. To face this societal challenge search for new treatments has intensified requiring good preclinical models, whose complexity and accuracy is increasing. However, the influence of ageing is often overlooked. Furthermore, phenotypic assessment of ageing models is in need of standardisation to enable the accurate evaluation of pre-clinical intervention studies in line with clinical translation

    CCR5Δ32 Genotype Leads to a Th2 Type Directed Immune Response in ESRD Patients

    Get PDF
    BACKGROUND: In patients with end stage renal disease (ESRD) we observed protection from inflammation-associated mortality in CCR5Δ32 carriers, leading to CCR5 deficiency, suggesting impact of CCR5Δ32 on inflammatory processes. Animal studies have shown that CCR5 deficiency is associated with a more pronounced Th2 type immune response, suggesting that in human CCR5Δ32 carriers the immune response may be more Th2 type directed. So, in the present study we determined the Th1-Th2 type directed immune response in ESRD patients carrying and not carrying the CCR5Δ32 genetic variant after stimulation. METHODOLOGY/PRINCIPAL FINDINGS: We tested this hypothesis by determining the levels of IFN-γ and IL-4 and the distribution of Th1, Th2 and Th17 directed circulating CD4+ and CD8+ T cells and regulatory T cells (Tregs) after stimulation in ESRD patients with (n = 10) and without (n = 9) the CCR5Δ32 genotype. The extracellular levels of IFN-γ and IL-4 did not differ between CCR5Δ32 carriers and non carriers. However, based on their intracellular cytokine profile the percentages IL-4 secreting CD4+ and CD8+ T cells carrying the CCR5Δ32 genotype were significantly increased (p = 0.02, respectively p = 0.02) compared to non carriers, indicating a more Th2 type directed response. Based on their intracellular cytokine profile the percentages IFN-γ and IL-17 secreting T cells did not differ between carriers and non-carriers nor did the percentage Tregs, indicating that the Th1, Th17 and T regulatory response was not affected by the CCR5Δ32 genotype. CONCLUSIONS/SIGNIFICANCE: This first, functional human study shows a more pronounced Th2 type immune response in CCR5Δ32 carriers compared to non carriers. These differences may be involved in the previously observed protection from inflammation-associated mortality in ESRD patients carrying CCR5Δ32
    • …
    corecore