92 research outputs found

    Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes

    Get PDF
    Synovial fluid from patients with various arthritides contains procoagulant, cell-derived microparticles. Here we studied whether synovial microparticles modulate the release of chemokines and cytokines by fibroblast-like synoviocytes (FLS). Microparticles, isolated from the synovial fluid of rheumatoid arthritis (RA) and arthritis control (AC) patients (n = 8 and n = 3, respectively), were identified and quantified by flow cytometry. Simultaneously, arthroscopically guided synovial biopsies were taken from the same knee joint as the synovial fluid. FLS were isolated, cultured, and incubated for 24 hours in the absence or presence of autologous microparticles. Subsequently, cell-free culture supernatants were collected and concentrations of monocyte chemoattractant protein-1 (MCP-1), IL-6, IL-8, granulocyte/macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF) and intracellular adhesion molecule-1 (ICAM-1) were determined. Results were consistent with previous observations: synovial fluid from all RA as well as AC patients contained microparticles of monocytic and granulocytic origin. Incubation with autologous microparticles increased the levels of MCP-1, IL-8 and RANTES in 6 of 11 cultures of FLS, and IL-6, ICAM-1 and VEGF in 10 cultures. Total numbers of microparticles were correlated with the IL-8 (r = 0.91, P < 0.0001) and MCP-1 concentrations (r = 0.81, P < 0.0001), as did the numbers of granulocyte-derived microparticles (r = 0.89, P < 0.0001 and r = 0.93, P < 0.0001, respectively). In contrast, GM-CSF levels were decreased. These results demonstrate that microparticles might modulate the release of chemokines and cytokines by FLS and might therefore have a function in synovial inflammation and angiogenesis

    Conformational heterogeneity of the Roc domains in C. tepidum Roc-COR and implications for human LRRK2 Parkinson mutations

    Get PDF
    Ras of complex proteins (Roc) is a Ras-like GTP binding domain that always occurs in tandem with the C-terminal of Roc (COR) domain, and is found in bacteria, plants and animals. Recently, it has been shown that Roco proteins belong to the family of G-proteins activated by nucleotide-dependent dimerization (GADs). We investigated the RocCOR tandem from the bacteria Chlorobium tepidum with site-directed spin labeling and pulse EPR distance measurements to follow conformational changes during the Roco G-protein cycle. Our results confirm that the COR domains are a stable dimerization device serving as a scaffold for the Roc domains, that in contrast are structurally heterogeneous and dynamic entities. Contrary to other GAD proteins, we observed only minor structural alterations upon binding and hydrolysis of GTP, indicating significant mechanistic variations within this protein class. Mutations in the most prominent member of the Roco family of proteins, leucine-rich repeat kinase 2 (LRRK2), are the most frequent cause of late-onset Parkinson's disease (PD). Using a stable recombinant LRRK2 Roc-COR-Kinase fragment we obtained detailed kinetic data for the G-protein cycle. Our data confirmed that dimerization is essential for efficient GTP hydrolysis, and PD mutations in the Roc domain result in decreased GTPase activity. Previous data have shown that these LRRK2 PD-mutations are located in the interface between Roc and COR. Importantly, analogous mutations in the conserved C. tepidum RocCOR interface significantly influence the structure and nucleotide-induced conformational changes of the Roc domains

    Reduction of Cross-Reactive Carbohydrate Determinants in Plant Foodstuff: Elucidation of Clinical Relevance and Implications for Allergy Diagnosis

    Get PDF
    Background: A longstanding debate in allergy is whether or not specific immunoglobulin-E antibodies (sIgE), recognizing cross-reactive carbohydrate determinants (CCD), are able to elicit clinical symptoms. In pollen and food allergy, $20% of patients display in-vitro CCD reactivity based on presence of a1,3-fucose and/or b1,2-xylose residues on N-glycans of plant (xylose/fucose) and insect (fucose) glycoproteins. Because the allergenicity of tomato glycoallergen Lyc e 2 was ascribed to N-glycan chains alone, this study aimed at evaluating clinical relevance of CCD-reduced foodstuff in patients with carbohydrate-specific IgE (CCD-sIgE). Methodology/Principal Findings: Tomato and/or potato plants with stable reduction of Lyc e 2 (tomato) or CCD formation in general were obtained via RNA interference, and gene-silencing was confirmed by immunoblot analyses. Two different CCD-positive patient groups were compared: one with tomato and/or potato food allergy and another with hymenopteravenom allergy (the latter to distinguish between CCD- and peptide-specific reactions in the food-allergic group). Nonallergic and CCD-negative food-allergic patients served as controls for immunoblot, basophil activation, and ImmunoCAP analyses. Basophil activation tests (BAT) revealed that Lyc e 2 is no key player among other tomato (glyco)allergens. CCDpositive patients showed decreased (re)activity with CCD-reduced foodstuff, most obvious in the hymenoptera venomallergic but less in the food-allergic group, suggesting that in-vivo reactivity is primarily based on peptide- and not CCDsIgE. Peptide epitopes remained unaffected in CCD-reduced plants, because CCD-negative patient sera showed reactivity similar to wild-type. In-house-made ImmunoCAPs, applied to investigate feasibility in routine diagnosis, confirmed BAT results at the sIgE level. Conclusions/Significance: CCD-positive hymenoptera venom-allergic patients (control group) showed basophil activation despite no allergic symptoms towards tomato and potato. Therefore, this proof-of-principle study demonstrates feasibility of CCD-reduced foodstuff to minimize ‘false-positive results’ in routine serum tests. Despite confirming low clinical relevance of CCD antibodies, we identified one patient with ambiguous in-vitro results, indicating need for further component-resolved diagnosis

    The Pediatric Obsessive-Compulsive Disorder Treatment Study II: rationale, design and methods

    Get PDF
    This paper presents the rationale, design, and methods of the Pediatric Obsessive-Compulsive Disorder Treatment Study II (POTS II), which investigates two different cognitive-behavior therapy (CBT) augmentation approaches in children and adolescents who have experienced a partial response to pharmacotherapy with a serotonin reuptake inhibitor for OCD. The two CBT approaches test a "single doctor" versus "dual doctor" model of service delivery. A specific goal was to develop and test an easily disseminated protocol whereby child psychiatrists would provide instructions in core CBT procedures recommended for pediatric OCD (e.g., hierarchy development, in vivo exposure homework) during routine medical management of OCD (I-CBT). The conventional "dual doctor" CBT protocol consists of 14 visits over 12 weeks involving: (1) psychoeducation, (2), cognitive training, (3) mapping OCD, and (4) exposure with response prevention (EX/RP). I-CBT is a 7-session version of CBT that does not include imaginal exposure or therapist-assisted EX/RP. In this study, we compared 12 weeks of medication management (MM) provided by a study psychiatrist (MM only) with two types of CBT augmentation: (1) the dual doctor model (MM+CBT); and (2) the single doctor model (MM+I-CBT). The design balanced elements of an efficacy study (e.g., random assignment, independent ratings) with effectiveness research aims (e.g., differences in specific SRI medications, dosages, treatment providers). The study is wrapping up recruitment of 140 youth ages 7–17 with a primary diagnosis of OCD. Independent evaluators (IEs) rated participants at weeks 0,4,8, and 12 during acute treatment and at 3,6, and 12 month follow-up visits

    Child/Adolescent Anxiety Multimodal Study (CAMS): rationale, design, and methods

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To present the design, methods, and rationale of the Child/Adolescent Anxiety Multimodal Study (CAMS), a recently completed federally-funded, multi-site, randomized placebo-controlled trial that examined the relative efficacy of cognitive-behavior therapy (CBT), sertraline (SRT), and their combination (COMB) against pill placebo (PBO) for the treatment of separation anxiety disorder (SAD), generalized anxiety disorder (GAD) and social phobia (SoP) in children and adolescents.</p> <p>Methods</p> <p>Following a brief review of the acute outcomes of the CAMS trial, as well as the psychosocial and pharmacologic treatment literature for pediatric anxiety disorders, the design and methods of the CAMS trial are described.</p> <p>Results</p> <p>CAMS was a six-year, six-site, randomized controlled trial. Four hundred eighty-eight (N = 488) children and adolescents (ages 7-17 years) with DSM-IV-TR diagnoses of SAD, GAD, or SoP were randomly assigned to one of four treatment conditions: CBT, SRT, COMB, or PBO. Assessments of anxiety symptoms, safety, and functional outcomes, as well as putative mediators and moderators of treatment response were completed in a multi-measure, multi-informant fashion. Manual-based therapies, trained clinicians and independent evaluators were used to ensure treatment and assessment fidelity. A multi-layered administrative structure with representation from all sites facilitated cross-site coordination of the entire trial, study protocols and quality assurance.</p> <p>Conclusions</p> <p>CAMS offers a model for clinical trials methods applicable to psychosocial and psychopharmacological comparative treatment trials by using state-of-the-art methods and rigorous cross-site quality controls. CAMS also provided a large-scale examination of the relative and combined efficacy and safety of the best evidenced-based psychosocial (CBT) and pharmacologic (SSRI) treatments to date for the most commonly occurring pediatric anxiety disorders. Primary and secondary results of CAMS will hold important implications for informing practice-relevant decisions regarding the initial treatment of youth with anxiety disorders.</p> <p>Trial registration</p> <p>ClinicalTrials.gov NCT00052078.</p
    corecore