836 research outputs found

    Packaging of RF Mems Switching Functions on Alumina Substrate

    Get PDF
    Recently the strong demands in wireless communication requires expanding development for the application of RF MEMS (Radio Frequency micro electro mechanical systems) sensing devices such as micro-switches, tunable capacitors because it offers lower power consumption, lower losses, higher linearity and higher Q factors compared with conventional communications components. To accelerate commercialisation of RF MEMS products, development for packaging technologies is one of the most critical issues should be solved beforehand.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    RF-MEMS Switched Varactors for Medium Power Applications

    Get PDF
    In RF (Radio Frequency) domain, one of the limitations of using MEMS (Micro Electromechanical Systems) switching devices for medium power applications is RF power. Failure phenomena appear even for 500 mW. A design of MEMS switched capacitors with an enhanced topology is presented in this paper to prevent it. This kind of device and its promising performances will serve to fabricate a MEMS based phase shifter able to work under several watts.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Phase controlled superconducting proximity effect probed by tunneling spectroscopy

    Get PDF
    Using a dual-mode STM-AFM microscope operating below 50mK we measured the Local Density of States (LDoS) along small normal wires connected at both ends to superconductors with different phases. We observe that a uniform minigap can develop in the whole normal wire and in the superconductors near the interfaces. The minigap depends periodically on the phase difference. The quasiclassical theory of superconductivity applied to a simplified 1D model geometry accounts well for the data.Comment: Accepted for publication in Physical Review Letter

    Superconducting atomic contacts under microwave irradiation

    Get PDF
    We have measured the effect of microwave irradiation on the dc current-voltage characteristics of superconducting atomic contacts. The interaction of the external field with the ac supercurrents leads to replicas of the supercurrent peak, the well known Shapiro resonances. The observation of supplementary fractional resonances for contacts containing highly transmitting conduction channels reveals their non-sinusoidal current-phase relation. The resonances sit on a background current which is itself deeply modified, as a result of photon assisted multiple Andreev reflections. The results provide firm support for the full quantum theory of transport between two superconductors based on the concept of Andreev bound states

    Thermopower Oscillation Symmetries in a Double-Loop Andreev Interferrometer

    Full text link
    Andreev interferometers, normal metal wires coupled to superconducting loops, display phase coherent changes as the magnetic flux through the superconducting loops is altered. Properties such as the electronic and thermal conductance of these devices have been shown to oscillate symmetrically about zero with a period equal to one superconducting flux quantum, Φo=h/2e\Phi_o = h/2e. However, the thermopower of these devices can oscillate symmetrically or antisymmetrically depending on the geometry of the sample, a phenomenon not well understood theoretically. Here we report on thermopower measurements of a double-loop Andreev interferometer where two Josephson currents in the normal metal wire may be controlled independently. The amplitude and symmetries of the observed thermopower oscillations may help to illuminate the unexplained dependence of oscillation symmetry on sample geometry.Comment: 6 Pages, 5 figures, to appear in Physica

    Radio-Frequency Single-Electron Refrigerator

    Get PDF
    We propose a cyclic refrigeration principle based on mesoscopic electron transport. Synchronous sequential tunnelling of electrons in a Coulomb-blockaded device, a normal metal-superconductor single-electron box, results in a cooling power of kBT×f\sim k_{\rm B}T \times f at temperature TT over a wide range of cycle frequencies ff. Electrostatic work, done by the gate voltage source, removes heat from the Coulomb island with an efficiency of kBT/Δ\sim k_{\rm B}T/\Delta, where Δ\Delta is the superconducting gap. The performance is not affected significantly by non-idealities, for instance by offset charges. We propose ways of characterizing the system and of its practical implementation.Comment: 5 pages, 4 figures; corrected typos, language improve

    Manipulating the Quantum State of an Electrical Circuit

    Full text link
    We have designed and operated a superconducting tunnel junction circuit that behaves as a two-level atom: the ``quantronium''. An arbitrary evolution of its quantum state can be programmed with a series of microwave pulses, and a projective measurement of the state can be performed by a pulsed readout sub-circuit. The measured quality factor of quantum coherence Qphi=25000 is sufficiently high that a solid-state quantum processor based on this type of circuit can be envisioned.Comment: 4 figures include

    Occupational lead neurotoxicity: Improvement in behavioural effects after reduction of exposure.

    Full text link
    To evaluate critical exposure levels and the reversibility of lead neurotoxicity a group of lead exposed foundry workers and an unexposed reference population were followed up for three years. During this period, tests designed to monitor neurobehavioural function and lead dose were administered. Evaluations of 160 workers during the first year showed dose dependent decrements in mood, visual/motor performance, memory, and verbal concept formation. Subsequently, an improvement in the hygienic conditions at the plant resulted in striking reductions in blood lead concentrations over the following two years. Attendant improvement in indices of tension (20% reduction), anger (18%), depression (26%), fatigue (27%), and confusion (13%) was observed. Performance on neurobehavioural testing generally correlated best with integrated dose estimates derived from blood lead concentrations measured periodically over the study period; zinc protoporphyrin levels were less well correlated with function. This investigation confirms the importance of compliance with workplace standards designed to lower exposures to ensure that individual blood lead concentrations remain below 50 micrograms/dl

    Probing interactions in mesoscopic gold wires

    Full text link
    We have measured in gold wires the energy exchange rate between quasiparticles, the phase coherence time of quasiparticles and the resistance vs. temperature, in order to probe the interaction processes which are relevant at low temperatures. We find that the energy exchange rate is higher than expected from the theory of electron-electron interactions, and that it has a different energy dependence. The dephasing time is constant at temperatures between 8 K and 0.5 K, and it increases below 0.5 K. The magnetoresistance is negative at large field scales, and the resistance decreases logarithmically with increasing temperatures, indicating the presence of magnetic impurities, probably Fe. Whereas resistivity and phase coherence measurements can be attributed to magnetic impurities, the question is raised whether these magnetic impurities could also mediate energy exchanges between quasiparticles.Comment: latex pothier.tex, 12 files, 15 pages in: Proceedings of the NATO Advanced Research Workshop on Size Dependent Magnetic Scattering, Pesc, Hungary, May 28 - June 1st, 2000 Chandrasekhar V., Van Haesendonck C. eds (Kluwer, 2001) [SPEC-S00/083
    corecore