530 research outputs found
Magnetic-field-dependent quasiparticle energy relaxation in mesoscopic wires
In order to find out if magnetic impurities can mediate interactions between
quasiparticles in metals, we have measured the effect of a magnetic field B on
the energy distribution function f(E) of quasiparticles in two silver wires
driven out-of-equilibrium by a bias voltage U. In a sample showing sharp
distributions at B=0, no magnetic field effect is found, whereas in the other
sample, rounded distributions at low magnetic field get sharper as B is
increased, with a characteristic field proportional to U. Comparison is made
with recent calculations of the effect of magnetic-impurities-mediated
interactions taking into account Kondo physics.Comment: 4 pages, 3 figures, to be published in Physical Review Letter
Intensity of Coulomb Interaction between quasiparticles in diffusive metallic wires
The energy dependence and intensity of Coulomb interaction between
quasiparticles in metallic wires is obtained from two different methods:
determination of the temperature dependence of the phase coherence time from
the magnetoresistance, and measurements of the energy distribution function in
out-of-equilibrium situations. In both types of experiment, the energy
dependence of the Coulomb interaction is found to be in excellent agreement
with theoretical predictions. In contrast, the intensity of the interaction
agrees closely with theory only with the first method, whereas an important
discrepancy is found using the second one. Different explanations are proposed,
and results of a test experiment are presented.Comment: Submitted to Solid States Communication
Bi-stable RF-MEMS Switched Capacitor Based on Metal-to-Metal Stiction
International audienceThis paper presents a new concept for the realization of a bi-stable RF-MEMS switched capacitor using a resistive contact. The main idea is to maintain the device in a given position using metal-to-metal stiction. The metal-to-metal contact is used only for mechanical purposes and has no electrical function. 20 Volts, 10 μsec pulses are used to switch the device from one stable position to the other. After disconnection, the device maintains its position with extremely little change over long periods. 0.06% on-state capacitance relative shift has been measured over 4 days with daily control, and lab environment closet storage. 5 minutes periodic cycling shows very little drift in both states of the RF-MEMS capacitor. Moreover, the device is fabricated using MEMS conventional processing steps permits to obtain capacitive contrast of 3
Influence of Magnetic Field on Effective Electron-Electron Interactions in a Copper Wire
We have measured in a copper wire the energy exchange rate between
quasiparticles as a function of the applied magnetic field. We find that the
effective electron-electron interaction is strongly modified by the magnetic
field, suggesting that magnetic impurities play a role on the interaction
processes.Comment: latex anthore.tex, 8 files, 6 figures, 7 pages in: Proceedings of the
XXXVIth Rencontres de Moriond `Electronic Correlations: From Meso- to
Nano-physics' Les Arcs, France January 20-27, 2001 [SPEC-S01/027
Density of states in a superconductor carrying a supercurrent
We have measured the tunneling density of states (DOS) in a superconductor
carrying a supercurrent or exposed to an external magnetic field. The pair
correlations are weakened by the supercurrent, leading to a modification of the
DOS and to a reduction of the gap. As predicted by the theory of
superconductivity in diffusive metals, we find that this effect is similar to
that of an external magnetic field.Comment: To be published in Physical Review Letter
Dephasing of Electrons in Mesoscopic Metal Wires
We have extracted the phase coherence time of electronic
quasiparticles from the low field magnetoresistance of weakly disordered wires
made of silver, copper and gold. In samples fabricated using our purest silver
and gold sources, increases as when the temperature
is reduced, as predicted by the theory of electron-electron interactions in
diffusive wires. In contrast, samples made of a silver source material of
lesser purity or of copper exhibit an apparent saturation of
starting between 0.1 and 1 K down to our base temperature of 40 mK. By
implanting manganese impurities in silver wires, we show that even a minute
concentration of magnetic impurities having a small Kondo temperature can lead
to a quasi saturation of over a broad temperature range, while
the resistance increase expected from the Kondo effect remains hidden by a
large background. We also measured the conductance of Aharonov-Bohm rings
fabricated using a very pure copper source and found that the amplitude of the
conductance oscillations increases strongly with magnetic field. This set
of experiments suggests that the frequently observed ``saturation'' of
in weakly disordered metallic thin films can be attributed to
spin-flip scattering from extremely dilute magnetic impurities, at a level
undetectable by other means.Comment: 16 pages, 11 figures, to be published in Physical Review
Observation of a controllable PI-junction in a 3-terminal Josephson device
Recently Baselmans et al. [Nature, 397, 43 (1999)] showed that the direction
of the supercurrent in a superconductor/normal/superconductor Josephson
junction can be reversed by applying, perpendicularly to the supercurrent, a
sufficiently large control current between two normal reservoirs. The novel
behavior of their 4-terminal device (called a controllable PI-junction) arises
from the nonequilibrium electron energy distribution established in the normal
wire between the two superconductors. We have observed a similar supercurrent
reversal in a 3-terminal device, where the control current passes from a single
normal reservoir into the two superconductors. We show theoretically that this
behavior, although intuitively less obvious, arises from the same
nonequilibrium physics present in the 4-terminal device. Moreover, we argue
that the amplitude of the PI-state critical current should be at least as large
in the 3-terminal device as in a comparable 4-terminal device.Comment: 4 pages, 4 figures, to appear in Physical Review B Rapid
Communication
Effect of Magnetic Impurities on Energy Exchange between Electrons
In order to probe quantitatively the effect of Kondo impurities on energy
exchange between electrons in metals, we have compared measurements on two
silver wires with dilute magnetic impurities (manganese) introduced in one of
them. The measurement of the temperature dependence of the electron phase
coherence time on the wires provides an independent determination of the
impurity concentration. Quantitative agreement on the energy exchange rate is
found with a theory by G\"{o}ppert et al. that accounts for Kondo scattering of
electrons on spin-1/2 impurities.Comment: 4 page
- …
