75 research outputs found

    Recovery of 150-250 MeV/nuc Cosmic Ray Helium Nuclei Intensities Between 2004-2010 Near the Earth, at Voyager 2 and Voyager 1 in the Heliosheath - A Two Zone Helioshpere

    Full text link
    The recovery of cosmic ray He nuclei of energy ~150-250 MeV/nuc in solar cycle #23 from 2004 to 2010 has been followed at the Earth using IMP and ACE data and at V2 between 74-92 AU and also at V1 beyond the heliospheric termination shock (91-113 AU). The correlation coefficient between the intensities at the Earth and at V1 during this time period is remarkable (0.921), after allowing for a ~0.9 year delay due to the solar wind propagation time from the Earth to the outer heliosphere. To describe the intensity changes and to predict the absolute intensities measured at all three locations we have used a simple spherically symmetric (no drift) two-zone heliospheric transport model with specific values for the diffusion coefficient in both the inner and outer zones. The diffusion coefficient in the outer zone, assumed to be the heliosheath from about 90 to 120 (130) AU, is determined to be ~5 times smaller than that in the inner zone out to 90 AU. This means the Heliosheath acts much like a diffusing barrier in this model. The absolute magnitude of the intensities and the intensity changes at V1 and the Earth are described to within a few percent by a diffusion coefficient that varies with time by a factor ~4 in the inner zone and only a factor of ~1.5 in the outer zone over the time period from 2004-2010. For V2 the observed intensities follow a curve that is as much as 25% higher than the calculated intensities at the V2 radius and at times the observed V2 intensities are equal to those at V1. At least one-half of the difference between the calculated and observed intensities between V1 and V2 can be explained if the heliosphere is squashed by ~10% in distance (non-spherical) so that the HTS location is closer to the Sun in the direction of V2 compared to V1.Comment: 13 Pages, 8 Figure

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar

    Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

    Get PDF

    Cosmic rays in the inner heliosphere: insights from observations, theory and models

    No full text
    The global modulation of galactic cosmic rays in the inner heliosphere is determined by four major mechanisms: convection, diffusion, particle drifts (gradient, curvature and current sheet drifts), and adiabatic energy losses. When these processes combine to produce modulation, the complexity increases significantly especially when one wants to describe how they evolve spatially in all three dimensions throughout the heliosphere, and with time, as a function of solar activity over at least 22 years. In this context also the global structure and features of the solar wind, the heliospheric magnetic field, the wavy current sheet, and of the heliosphere and its interface with the interstellar medium, play important roles. Space missions have contributed significantly to our knowledge during the past decade. In the inner heliosphere, Ulysses and several other missions have contributed to establish the relative importance of these major mechanisms, leading to renewed interest in developing more sophisticated theories and numerical models to explain these observations, and to understand the underlying physics that determines galactic cosmic ray modulation at Earth. An overview is given of some of the observational and modeling highlights over the past decade

    Heliospace physics in South Africa: IHY 2007

    No full text
    An overview is given of research activities in South Africa related to the International Heliophysical Year in 2007. The emphasis is on Space Physics (Geospace and Heliospace). A short historical perspective is given, followed by a description of the main research effort

    Modulation of galactic cosmic rays in a north-south asymmetrical heliosphere

    No full text
    Observations made with the two Voyager spacecraft confirmed that the solar wind decelerates to form the heliospheric termination shock. Voyager 1 crossed this termination shock at ∼94 AU in 2004, while Voyager 2 crossed it in 2007 at a different heliolatitude, about 10 AU closer to the Sun. These different positions of the termination shock confirm the dynamic and cyclic nature of the shock’s position. Observations from the two Voyager spacecraft inside the heliosheath indicate significant differences between them, suggesting that apart from the dynamic nature caused by changing solar activity there also may exist a global asymmetry in the north–south (polar) dimensions of the heliosphere, in addition to the expected nose–tail asymmetry. This relates to the direction in which the heliosphere is moving in interstellar space and its orientation with respect to the interstellar magnetic field. In this paper we focus on illustrating the effects of this north–south asymmetry on modulation of galactic cosmic ray Carbon, between polar angles of 55° and 125°, using a numerical model which includes all four major modulation processes, the termination shock and the heliosheath. This asymmetry is incorporated in the model by assuming a significant dependence on heliolatitude of the thickness of the heliosheath. When comparing the computed spectra between the two polar angles, we find that at energies E ∼1.0 GeV, these effects remain insignificant throughout the heliosphere even very close to the heliopause. Furthermore, we find that a higher local interstellar spectrum for Carbon enhances the effects of asymmetric modulation between the two polar angles at lower energies (E < ∼300 MeV). In conclusion, it is found that north–south asymmetrical effects on the modulation of cosmic ray Carbon depend strongly on the extent of the geometrical asymmetry of the heliosheath together with the assumed value of the local interstellar spectru

    Global gradients for cosmic-ray protons in the heliosphere during the solar minimum of cycle 23/24

    No full text
    Global gradients for cosmic-ray (CR) protons in the heliosphere are computed with a comprehensive modulation model for the recent prolonged solar minimum of Cycle 23/24. Fortunately, the PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) and Ulysses/KET (Kiel Electron Telescope) instruments simultaneously observed proton intensities for the period between July 2006 and June 2009. This provides a good opportunity to compare the basic features of the model with these observations, including observations from Voyager-1 in the outer heliosphere, beyond 50 AU . Radial and latitudinal gradients are calculated from measurements, with the latter possible because Ulysses changed its position significantly in the heliocentric meridional plane during this period. The modulation model is set up for the conditions that prevailed during this unusual solar-minimum period to gain insight into the role that particle drifts played in establishing the observed gradients for this period. Four year-end PAMELA proton spectra were reproduced with the model, from 2006 to 2009, followed by corresponding radial profiles that were computed along the Voyager-1 trajectory, and compared to available observations. It is found that the computed intensity levels are in agreement with solar-minimum observations from Voyager-1 at multiple energies. The model also reproduces the steep intensity increase observed when Voyager-1 crossed the heliopause region. Good agreement is found between computed and observed latitudinal gradients, so that we conclude that the model gives a most reasonable representation of modulation conditions from the Earth to the heliopause for the period from 2006 to 2009. As a characteristic feature of CR drifts, the most negative latitudinal gradient is computed for 2009, with a value of −0.15 %degree−1 around 600 MV. The maximum radial gradient in the inner heliosphere (as covered by Ulysses) also occurs in this range, with the highest value of 4.25 %AU−1 in 200
    corecore