970 research outputs found
Genetic algorithms with DNN-based trainable crossover as an example of partial specialization of general search
Universal induction relies on some general search procedure that is doomed to
be inefficient. One possibility to achieve both generality and efficiency is to
specialize this procedure w.r.t. any given narrow task. However, complete
specialization that implies direct mapping from the task parameters to
solutions (discriminative models) without search is not always possible. In
this paper, partial specialization of general search is considered in the form
of genetic algorithms (GAs) with a specialized crossover operator. We perform a
feasibility study of this idea implementing such an operator in the form of a
deep feedforward neural network. GAs with trainable crossover operators are
compared with the result of complete specialization, which is also represented
as a deep neural network. Experimental results show that specialized GAs can be
more efficient than both general GAs and discriminative models.Comment: AGI 2017 procedding, The final publication is available at
link.springer.co
Wildlife disease elimination and 1 density dependence
Disease control by managers is a crucial response to emerging wildlife epidemics, yet the means of control may be limited by the method of disease transmission. In particular, it is widely held that population reduction, while effective for controlling diseases that are subject to density-dependent transmission, is ineffective for controlling diseases that are subject to frequency-dependent transmission. We investigate control for horizontally transmitted diseases with frequency-dependent transmission where the control is via nonselective (for infected animals) culling or harvesting and the population can compensate through density-dependent recruitment or survival. Using a mathematical model, we show that culling or harvesting can eradicate the disease, even when transmission dynamics are frequency-dependent. E 24 radication can be achieved under frequency-dependent transmission when density-dependent population regulation induces compensatory growth of new, healthy individuals, which has the net effect of reducing disease prevalence by dilution. We also show that if harvest is used simultaneously with vaccination and there is high enough transmission coefficient, application of both controls may be less efficient than when vaccination alone is used. We illustrate the effects of these control approaches on disease prevalence using assumed parameters for chronic wasting disease in deer where the disease is transmitted directly among deer and through the environment
Geoadditive Regression Modeling of Stream Biological Condition
Indices of biotic integrity (IBI) have become an established tool to quantify the condition of small non-tidal streams and their watersheds. To investigate the effects of watershed characteristics on stream biological condition, we present a new technique for regressing IBIs on watershed-specific explanatory variables. Since IBIs are typically evaluated on anordinal scale, our method is based on the proportional odds model for ordinal outcomes. To avoid overfitting, we do not use classical maximum likelihood estimation but a component-wise functional gradient boosting approach. Because component-wise gradient boosting has an intrinsic mechanism for variable selection and model choice, determinants of biotic integrity can be identified. In addition, the method offers a relatively simple way to account for spatial correlation in ecological data. An analysis of the Maryland Biological Streams Survey shows that nonlinear effects of predictor variables on stream condition can be quantified while, in addition, accurate predictions of biological condition at unsurveyed locations are obtained
Taylor approximations of operator functions
This survey on approximations of perturbed operator functions addresses
recent advances and some of the successful methods.Comment: 12 page
Data-Driven Prediction and Design of bZIP Coiled-Coil Interactions
Selective dimerization of the basic-region leucine-zipper (bZIP) transcription factors presents a vivid example of how a high degree of interaction specificity can be achieved within a family of structurally similar proteins. The coiled-coil motif that mediates homo- or hetero-dimerization of the bZIP proteins has been intensively studied, and a variety of methods have been proposed to predict these interactions from sequence data. In this work, we used a large quantitative set of 4,549 bZIP coiled-coil interactions to develop a predictive model that exploits knowledge of structurally conserved residue-residue interactions in the coiled-coil motif. Our model, which expresses interaction energies as a sum of interpretable residue-pair and triplet terms, achieves a correlation with experimental binding free energies of R = 0.68 and significantly out-performs other scoring functions. To use our model in protein design applications, we devised a strategy in which synthetic peptides are built by assembling 7-residue native-protein heptad modules into new combinations. An integer linear program was used to find the optimal combination of heptads to bind selectively to a target human bZIP coiled coil, but not to target paralogs. Using this approach, we designed peptides to interact with the bZIP domains from human JUN, XBP1, ATF4 and ATF5. Testing more than 132 candidate protein complexes using a fluorescence resonance energy transfer assay confirmed the formation of tight and selective heterodimers between the designed peptides and their targets. This approach can be used to make inhibitors of native proteins, or to develop novel peptides for applications in synthetic biology or nanotechnology.National Institutes of Health (U.S.) (Award GM067681
New species of Entomobryini from Russia and Armenia (Collembola, Entomobryomorpha)
This paper is part of the results of a systematic study of the specimens of Entomobrya and related genera from various European museums and other material obtained from private collections. Various new species from Russia and Armenia were identified: Entomobrya karasukensis n. sp., Entomobrya tuvinica n. sp., Entomobrya pseudolanuginosa n. sp., Entomobrya stebaevae n. sp., Entomobrya kuznetsovae n. sp., Entomobrya brinevi n. sp., Entomobrya primorica n. sp., Entomobrya kabardinica n. sp., Entomobrya taigicola n. sp., Entomobryoides sotoadamesi n. sp. and Prodrepanura altaica n. sp. from Russia, and Entomobrya armeniensis n. sp. from Armenia. For the identification and description of these species we used the set of characters proposed by Jordana and Baquero (2005)
Quantum Field Theory in fractal space-time with negative Hausdorff-Colombeau dimensions.The solution cosmological constant problem
We introduce Hausdorff-Colombeau measure in respect with negative fractal
dimensions. Axiomatic quantum field theory in spacetime with negative fractal
dimensions is proposed.Spacetime is modelled as a multifractal subset of
with positive and negative fractal dimensions.The cosmological constant
problem arises because the magnitude of vacuum energy density predicted by
quantum field theory is about 120 orders of magnitude larger than the value
implied by cosmological observations of accelerating cosmic expansion. We
pointed out that the fractal nature of the quantum space-time with negative
Hausdorff-Colombeau dimensions can resolve this tension. The canonical Quantum
Field Theory is widely believed to break down at some fundamental high-energy
cutoff and therefore the quantum fluctuations in the vacuum can be treated
classically seriously only up to this high-energy cutoff. In this paper we
argue that Quantum Field Theory in fractal space-time with negative
Hausdorff-Colombeau dimensions gives high-energy cutoff on natural way. In
order to obtain disered physical result we apply the canonical Pauli-Villars
regularization up to . It means that there exist the ghost-driven
acceleration of the univers hidden in cosmological constant.Comment: 206 pages,3 figures. arXiv admin note: substantial text overlap with
arXiv:0901.2208, arXiv:astro-ph/9708045, arXiv:1805.12293,
arXiv:hep-th/0012253, arXiv:hep-th/9502025, arXiv:0912.4757, arXiv:0901.3775
by other author
Limits of using the results of polygraph testing in criminal procedure
An offer for restrictions, concerning the limits of use of polygraph testing results as orientation information at pre-trial stages of criminal proceedings, was made in this articl
Changes of the body functions during long-term hypokinesia
Prolonged hypokinesis (100-170 days) studied in 2000 rats kept in cages limiting their mobility provoked considerable changes in the gaseous and energetic metabolism: an elevation of the total gaseous metabolism and of the rate of O2 requirement by the muscles (in the late periods of hypokinesis) and a change in the intensity of tissue respiration of the liver and myocardium. There also proved to be a reduction in the level of phosphorylation and separation of oxidative phosphorylation in the myocardium, liver, and partially in the skeletal muscle. Prolonged hypokinesia led to changes in tissue metabolism: a disturbance of development of the animals, a marked delay and an increase in the weight of the organism and the muscular system, and disturbances of the mineral and protein metabolism. Prolonged hypokinesis also lead to exhaustion of the hypothalamus-hypophysis-adrenal cortex system
- …