430 research outputs found

    A phase III trial of topotecan and whole brain radiation therapy for patients with CNS-metastases due to lung cancer

    Get PDF
    Brain metastases represent an important cause of morbidity in patients with lung cancer and are associated with a mean survival of less than 6 months. Thus, new regimens improving the outcome of these patients are urgently needed. On the basis of promising data raised in a phase I/II trial, we initiated an open, randomised, prospective, multicentric phase III trial, comparing whole brain radiation therapy (WBRT; 20 × 2 Gy) alone with WBRT+topotecan (RCT; 0.4 mg m−2 day−1 × 20). A total of 320 patients with CNS-metastases due to SCLC or NSCLC were projected. The primary end point was overall survival, whereas second end points were local response and progression-free survival. However, until the cutoff date of study completion (i.e., a study duration of 34 months), only a total of 96 (RCT:47, WBRT:49) patients had been recruited, and so an analysis was performed at that time point. Although the numbers of grade 3/4 non-haematological toxicities (besides alopecia 115 (RCT/WBRT: 55 out of 60) were evenly distributed, the 25 haematological events occurred mainly in the combined treatment arm (24 out of 1). Local response, evaluated 2 weeks after treatment, was assessable in 44 (RCT/WBRT: 23 out of 21) patients, showing CR in eight (3 out of 5), PR in 17 (11 out of 6), SD in 14 (8 out of 6) and PD in five (1 out of 4) patients (all differences n.s.). Neither OAS (RCT/WBRT: median (days)): 87 out of 95, range 3–752/4–433; HR 1.32; 95% CI (0.83; 2.10)) nor PFS (median (days)): 71 out of 66, range, 3–399/4–228; HR 1.28, 95% CI (0.73; 2.43) differed significantly. On the basis of these results and the slow recruitment, a continuation of the study did not seem reasonable. The available data show no significant advantage for concurrent radiochemotherapy for patients with lung cancer; however, the recruited number of patients is too low to exhibit a small advantage of combined treatment

    Concomitant treatment of brain metastasis with Whole Brain Radiotherapy [WBRT] and Temozolomide [TMZ] is active and improves Quality of Life

    Get PDF
    BACKGROUND: Brain metastases (BM) represent one of the most frequent complications related to cancer, and their treatment continues to evolve. We have evaluated the activity, toxicity and the impact on Quality of Life (QoL) of a concomitant treatment with whole brain radiotherapy (WBRT) and Temozolomide (TMZ) in patients with brain metastases from solid tumors in a prospective Simon two stage study. METHODS: Fifty-nine patients were enrolled and received 30 Gy WBRT with concomitant TMZ (75 mg/m2/day) for ten days, and subsequently TMZ (150 mg/m2/day) for up to six cycles. The primary end points were clinical symptoms and radiologic response. RESULTS: Five patients had a complete response, 21 patients had a partial response, while 18 patients had stable disease. The overall response rate (45%) exceeded the target activity per study design. The median time to progression was 9 months. Median overall survival was 13 months. The most frequent toxicities included grade 3 neutropenia (15%) and anemia (13%), and only one patient developed a grade 4 thrombocytopenia. Age, Karnofsky performance status, presence of extracranial metastases and the recursive partitioning analysis (RPA) were found to be predictive factors for response in patients. Overall survival (OS) and progression-free survival (PFS) were dependent on age and on the RPA class. CONCLUSION: We conclude that this treatment is well tolerated, with an encouraging objective response rate, and a significant improvement in quality of life (p < 0.0001) demonstrated by FACT-G analysis. All patients answered the questionnaires and described themselves as 'independent' and able to act on their own initiatives. Our study found a high level of satisfaction for QoL, this provides useful information to share with patients in discussions regarding chemotherapy treatment of these lesions

    Gemcitabine twice weekly as a radiosensitiser for the treatment of brain metastases in patients with carcinoma: a phase I study

    Get PDF
    Conventional treatment for brain metastases (BM) is whole-brain radiotherapy (WBRT). Efficacy is poor. It might be increased by a potent radiosensitiser such as gemcitabine which is believed to cross the disrupted blood–brain barrier. Primary objective of this study was to determine the maximum tolerated dose (MTD) of twice weekly gemcitabine given concurrently with WBRT. Patients with BM from carcinoma were included. The dose of WBRT was 30 Gys (10 daily fractions). Gemcitabine was given 2–4 h prior to WBRT on days 1 and 8 for the first cohort of patients and then on days 1, 4, 8 and 11. Starting dose was 25 mg m−2, escalated by 12.5 mg m−2 increments. At least three patients were included per level. Dose limiting toxicity (DLT) was defined as grade 4 haematological or grade ⩾3 nonhaematological toxicity. A total of 25 patients were included; 74% had a PS 1 (ECOG). In all, 23 had non-small-cell lung cancer, six colorectal, four breast, two renal cell and one oesophageal carcinoma. A total of 92% had concurrent extracranial disease. Six had single BM, 13 had two or three BM and six multiple. Up to 50 mg m−2 (level 4) no DLT was observed. At 62.5 mg m−2, one out of six patients developed DLT (thrombocytopenia-bleeding). The next dose level (75 mg m−2) was abandoned after grade 4 bone marrow toxicity (fatal neutropenic sepsis) was seen in one out of two patients. So that the dose of 50 mg m−2 will be taken forward for further study

    Phase III randomised trial of doxorubicin-based chemotherapy compared with platinum-based chemotherapy in small-cell lung cancer

    Get PDF
    This randomised trial compared platinum-based to anthracycline-based chemotherapy in patients with small-cell lung cancer (limited or extensive stage) and ⩽2 adverse prognostic factors. Patients were randomised to receive six cycles of either ACE (doxorubicin 50 mg/m2 i.v., cyclophosphamide 1 g/m2 i.v. and etoposide 120 mg/m2 i.v. on day 1, then etoposide 240 mg/m2 orally for 2 days) or PE (cisplatin 80 mg/m2 and etoposide 120 mg/m2 i.v. on day 1, then etoposide 240 mg/m2 orally for 2 days) given for every 3 weeks. For patients where cisplatin was not suitable, carboplatin (AUC6) was substituted. A total of 280 patients were included (139 ACE, 141 PE). The response rates were 72% for ACE and 77% for PE. One-year survival rates were 34 and 38% (P=0.497), respectively and 2-year survival was the same (12%) for both arms. For LD patients, the median survival was 10.9 months for ACE and 12.6 months for PE (P=0.51); for ED patients median survival was 8.3 months and 7.5 months, respectively. More grades 3 and 4 neutropenia (90 vs 57%, P<0.005) and grades 3 and 4 infections (73 vs 29%, P<0.005) occurred with ACE, resulting in more days of hospitalisation and greater i.v. antibiotic use. ACE was associated with a higher risk of neutropenic sepsis than PE and with a trend towards worse outcome in patients with LD, and should not be studied further in this group of patients

    Clinical practice guideline on the optimal radiotherapeutic management of brain metastases

    Get PDF
    BACKGROUND: An evidence-based clinical practice guideline on the optimal radiotherapeutic management of single and multiple brain metastases was developed. METHODS: A systematic review and meta-analysis was performed. The Supportive Care Guidelines Group formulated clinical recommendations based on their interpretation of the evidence. External review of the report by Ontario practitioners was obtained through a mailed survey, and final approval was obtained from Cancer Care Ontario's Practice Guidelines Coordinating Committee (PGCC). RESULTS: One hundred and nine Ontario practitioners responded to the survey (return rate 44%). Ninety-six percent of respondents agreed with the interpretation of the evidence, and 92% agreed that the report should be approved. Minor revisions were made based on feedback from external reviewers and the PGCC. The PGCC approved the final practice guideline report. CONCLUSIONS: For adult patients with a clinical and radiographic diagnosis of brain metastases (single or multiple) we conclude that, • Surgical excision should be considered for patients with good performance status, minimal or no evidence of extracranial disease, and a surgically accessible single brain metastasis. • Postoperative whole brain radiotherapy (WBRT) should be considered to reduce the risk of tumour recurrence for patients who have undergone resection of a single brain metastasis. • Radiosurgery boost with WBRT may improve survival in select patients with unresectable single brain metastases. • The whole brain should be irradiated for multiple brain metastases. Standard dose-fractionation schedules are 3000 cGy in 10 fractions or 2000 cGy in 5 fractions. • Radiosensitizers are not recommended outside research studies. • In select patients, radiosurgery may be considered as boost therapy with WBRT to improve local tumour control. Radiosurgery boost may improve survival in select patients. • Chemotherapy as primary therapy or chemotherapy with WBRT remains experimental. • Supportive care is an option but there is a lack of Level 1 evidence as to which subsets of patients should be managed with supportive care alone. Qualifying statements addressing factors to consider when applying these recommendations are provided in the full report. The rigorous development, external review and approval process has resulted in a practice guideline that is strongly endorsed by Ontario practitioners

    The role of chemotherapy in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline

    Get PDF
    TARGET POPULATION: This recommendation applies to adults with newly diagnosed brain metastases; however, the recommendation below does not apply to the exquisitely chemosensitive tumors, such as germinomas metastatic to the brain. RECOMMENDATION: Should patients with brain metastases receive chemotherapy in addition to whole brain radiotherapy (WBRT)? Level 1 Routine use of chemotherapy following WBRT for brain metastases has not been shown to increase survival and is not recommended. Four class I studies examined the role of carboplatin, chloroethylnitrosoureas, tegafur and temozolomide, and all resulted in no survival benefit. Two caveats are provided in order to allow the treating physician to individualize decision-making: First, the majority of the data are limited to non small cell lung (NSCLC) and breast cancer; therefore, in other tumor histologies, the possibility of clinical benefit cannot be absolutely ruled out. Second, the addition of chemotherapy to WBRT improved response rates in some, but not all trials; response rate was not the primary endpoint in most of these trials and end-point assessment was non-centralized, non-blinded, and post-hoc. Enrollment in chemotherapy-related clinical trials is encouraged

    Second-line paclitaxel in non-small cell lung cancer initially treated with cisplatin: a study by the European Lung Cancer Working Party

    Get PDF
    In the context of a phase III trial comparing in advanced non-small cell lung cancer (NSCLC) sequential to conventional administration of cisplatin-based chemotherapy and paclitaxel, we evaluated the activity of paclitaxel as second-line chemotherapy and investigated any relation of its efficacy with the type of failure after cisplatin. Patients received three courses of induction GIP (gemcitabine, ifosfamide, cisplatin). Non-progressing patients were randomised between three further courses of GIP or three courses of paclitaxel. Second-line paclitaxel was given to patients with primary failure (PF) to GIP and to those progressing after randomisation to further GIP (secondary failure or SF). One hundred sixty patients received second-line paclitaxel. Response rates were 7.7% for PF and 11.6% for SF (P=0.42). Median survival times (calculated from paclitaxel start) were 4.1 and 7.1 months for PF and SF (P=0.002). In multivariate analysis, three variables were independently associated with better survival: SF (hazard ratio (HR)=1.55, 95% confidence interval (CI) 1.08–2.22; P=0.02), normal haemoglobin level (HR=1.56, 95% CI 1.08–2.26; P=0.02) and minimal weight loss (HR=1.79, 95% CI 1.26–2.55; P=0.001). Paclitaxel in NSCLC patients, whether given for primary or for SF after cisplatin-based chemotherapy, demonstrates activity similar to other drugs considered active as second-line therapy

    Pemetrexed disodium in recurrent locally advanced or metastatic squamous cell carcinoma of the head and neck

    Get PDF
    This phase II study determined response rate of patients with locally advanced or metastatic head and neck cancer treated with pemetrexed disodium, a new multitargeted antifolate that inhibits thymidylate synthase, dihydrofolate reductase and glycinamide ribonucleotide formyl transferase. 35 patients with local or metastatic relapse of squamous cell carcinoma of the head and neck (31 male, 4 female; median age 53 years) were treated with pemetrexed 500 mg m2 administered as a 10-minute infusion on day 1 of a 21-day cycle. Patients received 1 to 8 cycles of therapy. 9 patients (26.5%) had an objective response, with a median response duration of 5.6 months (range 2.9–20 months). 15 (44.1%) had stable disease, and 8 (23.5%) had progressive disease. 2 patients were not assessable for response. Median overall survival was 6.4 months (range 0.7–28.1 months; 95% CI: 3.9–7.7 months). 24 patients (68.6%) experienced grade 3/4 neutropenia, with febrile neutropenia in 4 (11.4%). Grade 3/4 anaemia and thrombocytopenia occurred in 11 (34.3%) and 6 (17.1%) patients, respectively. The most frequent non-haematological toxicity was grade 3/4 mucositis (17.1%; 6 patients). In conclusion, pemetrexed is active in squamous cell carcinoma of the head and neck. Although substantial haematological toxicities were experienced by patients, subsequent studies have shown that these toxicities can be proactively managed by folic acid and vitamin B12 supplementation. © 2001 Cancer Research Campaign http://www.bjcancer.co
    corecore