6 research outputs found

    Regulation of connexin43 gap junctional communication by phosphatidylinositol 4,5-bisphosphate

    Get PDF
    Cell–cell communication through connexin43 (Cx43)-based gap junction channels is rapidly inhibited upon activation of various G protein–coupled receptors; however, the mechanism is unknown. We show that Cx43-based cell–cell communication is inhibited by depletion of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2) from the plasma membrane. Knockdown of phospholipase Cβ3 (PLCβ3) inhibits PtdIns(4,5)P2 hydrolysis and keeps Cx43 channels open after receptor activation. Using a translocatable 5-phosphatase, we show that PtdIns(4,5)P2 depletion is sufficient to close Cx43 channels. When PtdIns(4,5)P2 is overproduced by PtdIns(4)P 5-kinase, Cx43 channel closure is impaired. We find that the Cx43 binding partner zona occludens 1 (ZO-1) interacts with PLCβ3 via its third PDZ domain. ZO-1 is essential for PtdIns(4,5)P2-hydrolyzing receptors to inhibit cell–cell communication, but not for receptor–PLC coupling. Our results show that PtdIns(4,5)P2 is a key regulator of Cx43 channel function, with no role for other second messengers, and suggest that ZO-1 assembles PLCβ3 and Cx43 into a signaling complex to allow regulation of cell–cell communication by localized changes in PtdIns(4,5)P2

    Interaction of c-Src with gap junction protein connexin-43. Role in the regulation of cell-cell communication

    No full text
    Cell-cell communication via connexin-43 (Cx43)-based gap junctions is transiently inhibited by certain mitogens, but the underlying regulatory mechanisms are incompletely understood. Our previous studies have implicated the c-Src tyrosine kinase in mediating transient closure of Cx43-based gap junctions in normal fibroblasts. Here we show that activated c-Src (c-SrcK(+)) phosphorylates the COOH-terminal tail of Cx43, both in vitro and in intact cells. Coimmunoprecipitation experiments reveal that Cx43 associates with c-SrcK(+) and, to a lesser extent, with wild-type c-Src, but not with kinase-dead c-Src. Mutation of residue Cx43 Tyr(265) (Cx43-Y265F mutant) abolishes both tyrosine phosphorylation of Cx43 and its coprecipitation with c-Src. Expression of c-SrcK(+) in Rat-1 cells disrupts gap junctional communication. Strikingly, the communication-defective phenotype is bypassed after coexpression of the Cx43-Y265F mutant or a COOH-terminally truncated version of Cx43 (Cx43Delta263) that lacks residue Tyr(265). Our results support a model in which activated c-Src phosphorylates the COOH-terminal tail of Cx43 on residue Tyr(265), resulting in a stable interaction between both proteins leading to inhibition of gap junctional communication
    corecore