162 research outputs found

    Unveiling the stellar halo with TGAS

    Get PDF
    The detailed study of the Galactic stellar halo may hold the key to unlocking the assembly history of the Milky Way. Here, we present a machine learning model for selecting metal poor stars from the TGAS catalogue using 5 dimensional phase-space information, coupled with optical and near-IR photometry. We characterise the degree of substructure in our halo sample in the Solar neighbourhood by measuring the velocity correlation function.<br/

    The power of teaming up HST and Gaia:The first proper motion measurement of the distant cluster NGC 2419

    Get PDF
    Aims: We present the first measurement of the proper motion and orbit of the very distant and intriguing globular cluster NCG 2419. Methods: We have combined data from HST and Gaia DR1 to derive the relative proper motions of stars in the direction to the cluster. To tie to an absolute reference frame we have used a background galaxy located in the field. Results: We find the absolute proper motion of NGC 2419 to be (μαcos(δ)(\mu_{\alpha}\cos(\delta), μδ\mu_{\delta})=(0.17±0.26,0.49±0.17-0.17\pm0.26,-0.49\pm0.17) mas/yr. We have integrated the orbit of the cluster in a Galactic potential and found it to oscillate between \sim53 kpc and \sim98 kpc on a nearly polar orbit. This makes it very likely that NGC 2419 is a former cluster of the Sagittarius dwarf spheroidal galaxy, also because it shares the same sense of rotation around the Milky Way.Comment: 5 pages, 4 figures, accepted for publication by A&A Letter

    Gaia DR2 orbital properties for field stars with globular cluster-like CN band strenghts

    Get PDF
    Context. Large spectroscopic surveys of the Milky Way have revealed that a small population of stars in the halo have light element abundances comparable to those found in globular clusters. The favoured explanation for the peculiar abundances of these stars is that they originated inside a globular cluster and were subsequently lost. Aims. Using orbit calculations we assess the likelihood that an existing sample of 57 field stars with globular cluster-like CN band strength originated in any of the currently known Milky Way globular clusters. Methods. Using Sloan Digital Sky Survey and Gaia data, we determine orbits and integrals of motion of our sample of field stars, and use these values and metallicity to identify likely matches to globular clusters. The pivot hypothesis is that had these stars been stripped from such objects, they would have remained on very similar orbits. Results. We find that similar to 70% of the sample of field stars have orbital properties consistent with the halo of the Milky Way; however, only 20 stars have likely orbital associations with an existing globular cluster. The remaining similar to 30% of the sample have orbits that place them in the outer Galactic disc. No cluster of similar metallicity is known on analogous disc orbits. Conclusions. The orbital properties of the halo stars seem to be compatible with the globular cluster escapee scenario. The stars in the outer disc are particularly surprising and deserve further investigation to establish their nature

    The angular momentum of disc galaxies at z=1

    Get PDF
    We investigate the relation between stellar mass and specific stellar angular momentum, or `Fall relation', for a sample of 17 isolated, regularly rotating disc galaxies at z=1. All galaxies have a) rotation curves determined from Halpha emission-line data; b) HST imaging in optical and infrared filters; c) robust determinations of their stellar masses. We use HST images in f814w and f160w filters, roughly corresponding to rest-frames B and I bands, to extract surface brightness profiles for our systems. We robustly bracket the specific angular momentum by assuming that rotation curves beyond the outermost Halpha rotation point stay either flat or follow a Keplerian fall-off. By comparing our measurements with those determined for disc galaxies in the local Universe, we find no evolution in the Fall relation in the redshift range 0<z<1, regardless of the band used and despite the uncertainties in the stellar rotation curves at large radii. This result holds unless stellar masses at z=1 are systematically underestimated by more than 50%. Our findings are compatible with expectations based on a LCDM cosmological framework and support a scenario where both the stellar Tully-Fisher and mass-size relations for spirals do not evolve significantly in this redshift range.Comment: 11 pages, 4 figures, 1 table. Accepted by A&

    Changes in Mortality Related to Traumatic Brain Injuries in the Seychelles from 1989 to 2018.

    Get PDF
    Introduction: Traumatic Brain Injuries (TBIs) are a significant source of disability and mortality, which disproportionately affect low- and middle-income countries. The Republic of Seychelles is a country in the African region that has experienced rapid socio-economic development and one in which all deaths and the age distribution of the population have been enumerated for the past few decades. The aim of this study was to investigate TBI-related mortality changes in the Republic of Seychelles during 1989-2018. Methods: All TBI-related deaths were ascertained using the national Civil Registration and Vital Statistics System. Age- and sex-standardised mortality rates (per 100,000 person-years) were standardised to the age distribution of the World Health Organisation standard population. Results: The 30-year age-standardised TBI-related mortality rates were 22.6 (95% CI 19.9, 25.2) in males and 4.0 (95% CI 2.9, 5.1) in females. Road traffic collisions were the leading contributor to TBI-related mortality [10.0 (95% CI 8.2, 11.8) in males and 2.7 (95% CI 1.8, 3.6) in females, P &gt; 0.05]. TBI-related mortality was most frequent at age 20-39 years in males (8.0) and at age 0-19 in females (1.4). Comparing 2004-2018 vs. 1989-2003, the age-standardised mortality rates changed in males/females by -20%/-11% (all cause mortality), -24%/+39.4% (TBIs) and +1%/+34.8% (road traffic injury-related TBI). Conclusion: TBI-related mortality rates were much higher in males but decreased over time. Road traffic collisions were the single greatest contributor to TBI mortality, emphasising the importance of road safety measures

    The dynamically selected stellar halo of the Galaxy with Gaia and the tilt of the velocity ellipsoid

    Get PDF
    Aims. We study the dynamical properties of halo stars located in the solar neighbourhood. Our goal is to explore how the properties of the halo depend on the selection criteria used to define a sample of halo stars. Once this is understood, we proceed to measure the shape and orientation of the halo’s velocity ellipsoid and we use this information to put constraints on the gravitational potential of the Galaxy. Methods. We use the recently released Gaia DR1 catalogue cross-matched to the RAVE dataset for our analysis. We develop a dynamical criterion based on the distribution function of stars in various Galactic components, using action integrals to identify halo members, and we compare this to the metallicity and to kinematically selected samples. Results. With this new method, we find 1156 stars in the solar neighbourhood that are likely members of the stellar halo. Our dynamically selected sample consists mainly of distant giants on elongated orbits. Their metallicity distribution is rather broad, with roughly half of the stars having [M/H] ≥ −1 dex. The use of different selection criteria has an important impact on the characteristics of the velocity distributions obtained. Nonetheless, for our dynamically selected and for the metallicity selected samples, we find the local velocity ellipsoid to be aligned in spherical coordinates in a Galactocentric reference frame. This suggests that the total gravitational potential is rather spherical in the region spanned by the orbits of the halo stars in these samples

    Regional brain morphometry in patients with traumatic brain injury based on acute- and chronic-phase magnetic resonance imaging.

    Get PDF
    Traumatic brain injury (TBI) is caused by a sudden external force and can be very heterogeneous in its manifestation. In this work, we analyse T1-weighted magnetic resonance (MR) brain images that were prospectively acquired from patients who sustained mild to severe TBI. We investigate the potential of a recently proposed automatic segmentation method to support the outcome prediction of TBI. Specifically, we extract meaningful cross-sectional and longitudinal measurements from acute- and chronic-phase MR images. We calculate regional volume and asymmetry features at the acute/subacute stage of the injury (median: 19 days after injury), to predict the disability outcome of 67 patients at the chronic disease stage (median: 229 days after injury). Our results indicate that small structural volumes in the acute stage (e.g. of the hippocampus, accumbens, amygdala) can be strong predictors for unfavourable disease outcome. Further, group differences in atrophy are investigated. We find that patients with unfavourable outcome show increased atrophy. Among patients with severe disability outcome we observed a significantly higher mean reduction of cerebral white matter (3.1%) as compared to patients with low disability outcome (0.7%)

    The merger that led to the formation of the Milky Way's inner stellar halo and thick disk

    Get PDF
    The assembly process of our Galaxy can be retrieved using the motions and chemistry of individual stars. Chemo-dynamical studies of the nearby halo have long hinted at the presence of multiple components such as streams, clumps, duality and correlations between the stars' chemical abundances and orbital parameters. More recently, the analysis of two large stellar surveys have revealed the presence of a well-populated chemical elemental abundance sequence, of two distinct sequences in the colour-magnitude diagram, and of a prominent slightly retrograde kinematic structure all in the nearby halo, which may trace an important accretion event experienced by the Galaxy. Here report an analysis of the kinematics, chemistry, age and spatial distribution of stars in a relatively large volume around the Sun that are mainly linked to two major Galactic components, the thick disk and the stellar halo. We demonstrate that the inner halo is dominated by debris from an object which at infall was slightly more massive than the Small Magellanic Cloud, and which we refer to as Gaia-Enceladus. The stars originating in Gaia-Enceladus cover nearly the full sky, their motions reveal the presence of streams and slightly retrograde and elongated trajectories. Hundreds of RR Lyrae stars and thirteen globular clusters following a consistent age-metallicity relation can be associated to Gaia-Enceladus on the basis of their orbits. With an estimated 4:1 mass-ratio, the merger with Gaia-Enceladus must have led to the dynamical heating of the precursor of the Galactic thick disk and therefore contributed to the formation of this component approximately 10 Gyr ago. These findings are in line with simulations of galaxy formation, which predict that the inner stellar halo should be dominated by debris from just a few massive progenitors.Comment: 19 pages, 8 figures. Published in Nature in the issue of Nov. 1st, 2018. This is the authors' version before final edit

    Uncertainty in maritime risk analysis: Extended case study on chemical tanker collisions

    Get PDF
    Uncertainty is inherent to risk analysis. Therefore, it is extremely important to properly address the issue of uncertainty. In the field of risk analysis for maritime transportation systems, the effect of uncertainty is rarely discussed or quantified. For this reason, this article discusses a case study dealing with risk analysis for a chemical spill in the Gulf of Finland and analyses the related uncertainties by adopting a systematic framework. Risk is assessed in terms of the expected spill frequency and spill volumes caused by collisions between ships and chemical tankers in the Gulf of Finland. This is done by applying a collision consequence with a novel approach-to-collision-speed linkage model and Gulf of Finland-specific causation factors, which are based on reanalysing accident data. This article also presents a metamodel for assessing collision probability with initial vessel speeds for any given scenario where a chemical tanker is about to be struck by another vessel. Even when conducting a risk analysis using state-of-the-art methods, there is still a medium-high degree of uncertainty in the model presented in this article, which only becomes apparent when conducting a systematic uncertainty assessment analysis. However, an uncertainty assessment is an important part of quantitative maritime risk analysis. For this purpose, a qualitative framework for uncertainty assessment analysis is introduced for general use in the field of maritime risk analysis.</p

    Somatostatin receptor 2A in gliomas: Association with oligodendrogliomas and favourable outcome

    Get PDF
    Somatostatin receptor subtype 2A (SSTR2A) is a potential therapeutic target in gliomas. Data on SSTR2A expression in different glioma entities, however, is particularly conflicting. Our objective was to characterize SSTR2A status and explore its impact on survival in gliomas classified according to the specific molecular signatures of the updated WHO classification. In total, 184 glioma samples were retrospectively analyzed for SSTR2A expression using immunohistochemistry with monoclonal antibody UMB-1. Double staining with CD68 was used to exclude microglia and macrophages from analyses. SSTR2A staining intensity and its localization in tumor cells was evaluated and correlated with glioma entities and survival. Diagnoses included 101 glioblastomas (93 isocitrate dehydrogenase (IDH) -wildtype, 3 IDH-mutant, 5 not otherwise specified (NOS)), 60 astrocytomas (22 IDH-wildtype, 37 IDH-mutant, 1 NOS), and 23 oligodendrogliomas (19 IDH-mutant and 1p/19q-codeleted, 4 NOS). SSTR2A expression significantly associated with oligodendrogliomas (79% SSTR2A positive) compared to IDH-mutant or IDH-wildtype astrocytomas (27% and 23% SSTR2A positive, respectively), and especially glioblastomas of which only 13% were SSTR2A positive (p < 0.001, Fisher's exact test). The staining pattern in glioblastomas was patchy whereas more homogeneous membranous and cytoplasmic staining was detected in oligodendrogliomas. Positive SSTR2A was related to longer overall survival in grade II and III gliomas (HR 2.7, CI 1.2-5.8, p = 0.013). In conclusion, SSTR2A expression is infrequent in astrocytomas and negative in the majority of glioblastomas where it is of no prognostic significance. In contrast, oligodendrogliomas show intense membranous and cytoplasmic SSTR2A expression, which carries potential diagnostic, prognostic, and therapeutic value
    corecore