283 research outputs found

    Update on the Laboratory Diagnosis of Invasive Fungal Infections

    Get PDF
    Recent advances in the management of patients with haematological malignancies and transplant recipients have paralleled an increase in the incidence of fungal diseases due to pathogenic genera such as Candida and Aspergillus and the emergence of less common genera including Fusarium and Zygomycetes. Despite availability of new antifungal agents these opportunistic infections have high mortality. Rapid and reliable species identification is essential for antifungal treatment, but detection of the increasing diversity of fungal pathogens by conventional phenotypic methods remains difficult and time-consuming, and the results may sometimes be inconclusive, especially for unusual species. New diagnostic techniques (e.g., 1,3-beta-d-glucan detection) could improve this scenario, although further studies are necessary to confirm their usefulness in clinical practice

    New approaches for antifungal susceptibility testing

    Get PDF
    BACKGROUND: Invasive fungal diseases, including those caused by (multi)drug-resistant Candida and Aspergillus species, still represent global public health concerns. Information about the antifungal susceptibility testing (AFST) of fungal isolates must be quickly produced to help clinicians in administrating appropriate antifungal therapies. Unfortunately, reference AFST methods, albeit accurate, are labour-intensive and take several hours before patients' results can be available to the treating clinicians. AIMS & SOURCES: This review is a blend of evidence obtained from PubMed literature searches, clinical laboratory experience, and the author's opinions that is aimed to summarize recent significant advances and ongoing challenges in the AFST area. CONTENT: Particular attention is given to the new approaches based on genetic or phenotypic recognition of antifungal resistance that are destined to enhance the clinical usefulness of AFST in the next future. Following short-time exposures of fungal cells to antifungal drugs, new antifungal susceptibility endpoints have been established, as well as novel diagnostic assay platforms have been proposed for the genotyping assessment of fungal isolates with resistance-associated mutations. Overall, new approaches provide a rapid, reliable means of identifying those fungal isolates with phenotypically detectable acquired resistance mechanisms, independently from the clinical susceptibility categorization of the isolates as obtained in a classical AFST way. IMPLICATIONS: Despite holding promise as a surrogate diagnostic method to better direct antifungal therapy, the AFST approaches described in this review need to be evaluated in multicentre laboratory studies to enable their standardization and refinement

    Caspofungin activity against clinical isolates of azole cross-resistant Candida glabrata overexpressing efflux pump genes

    Get PDF
    Objectives: Several studies have documented the potent in vitro activity of caspofungin against Candida spp. This is of special concern for Candida glabrata infections that are often resistant to many azole antifungal agents and, consequently, difficult to treat. The aim of the present study was to expand the data on the in vitro activity of caspofungin against azole-resistant isolates of C. glabrata. Methods: A total of 50 clinical isolates of C. glabrata were tested for susceptibility to caspofungin. The isolates were cross-resistant to multiple azoles, including fluconazole, itraconazole, ketoconazole and voriconazole. Expression of the resistance-related CgCDR1 and CgCDR2 genes was evaluated by quantitative RT-PCR analysis. The MICs of caspofungin were determined by using the National Committee for Clinical Laboratory Standards M27-A2 reference method. Results: C. glabrata isolates exhibited increased expression of the CDR efflux pump(s), and this was in accordance with their high-level azole resistance. In contrast, all the isolates were highly susceptible to caspofungin (100% of isolates were inhibited at ≤1 mg/L). Conclusions: Our results represent further evidence for the excellent antifungal potency of caspofungin, particularly against C. glabrata isolates expressing cross-resistance to azole

    Upregulation of the Adhesin Gene EPA1 Mediated by PDR1 in Candida glabrata Leads to Enhanced Host Colonization.

    Get PDF
    Candida glabrata is the second most common Candida species causing disseminated infection, after C. albicans. C. glabrata is intrinsically less susceptible to the widely used azole antifungal drugs and quickly develops secondary resistance. Resistance typically relies on drug efflux with transporters regulated by the transcription factor Pdr1. Gain-of-function (GOF) mutations in PDR1 lead to a hyperactive state and thus efflux transporter upregulation. Our laboratory has characterized a collection of C. glabrata clinical isolates in which azole resistance was found to correlate with increased virulence in vivo. Contributing phenotypes were the evasion of adhesion and phagocytosis by macrophages and an increased adhesion to epithelial cells. These phenotypes were found to be dependent on PDR1 GOF mutation and/or C. glabrata strain background. In the search for the molecular effectors, we found that PDR1 hyperactivity leads to overexpression of specific cell wall adhesins of C. glabrata. Further study revealed that EPA1 regulation, in particular, explained the increase in adherence to epithelial cells. Deleting EPA1 eliminates the increase in adherence in an in vitro model of interaction with epithelial cells. In a murine model of urinary tract infection, PDR1 hyperactivity conferred increased ability to colonize the bladder and kidneys in an EPA1-dependent way. In conclusion, this study establishes a relationship between PDR1 and the regulation of cell wall adhesins, an important virulence attribute of C. glabrata. Furthermore, our data show that PDR1 hyperactivity mediates increased adherence to host epithelial tissues both in vitro and in vivo through upregulation of the adhesin gene EPA1. IMPORTANCE Candida glabrata is an important fungal pathogen in human diseases and is also rapidly acquiring drug resistance. Drug resistance can be mediated by the transcriptional activator PDR1, and this results in the upregulation of multidrug transporters. Intriguingly, this resistance mechanism is associated in C. glabrata with increased virulence in animal models and also with increased adherence to specific host cell types. The C. glabrata adhesin gene EPA1 is a major contributor of virulence and adherence to host cells. Here, we show that EPA1 expression is controlled by PDR1 independently of subtelomeric silencing, a known EPA1 regulation mechanism. Thus, a relationship exists between PDR1, EPA1 expression, and adherence to host cells, which is critical for efficient virulence. Our results demonstrate that acquisition of drug resistance is beneficial for C. glabrata in fungus-host relationships. These findings further highlight the challenges of the therapeutic management of C. glabrata infections in human patients

    Genome-wide expression profiling of the response to short-term exposure to fluconazole in Cryptococcus neoformans serotype A

    Get PDF
    Fluconazole (FLC), a triazole antifungal drug, is widely used for the maintenance therapy of cryptococcal meningoencephalitis, the most common opportunistic infection in AIDS patients. In this study, we examined changes in the gene expression profile of the C. neoformans reference strain H99 (serotype A) following FLC treatment in order to investigate the adaptive cellular responses to drug stress

    Gain of Function Mutations in CgPDR1 of Candida glabrata Not Only Mediate Antifungal Resistance but Also Enhance Virulence

    Get PDF
    CgPdr1p is a Candida glabrata Zn(2)-Cys(6) transcription factor involved in the regulation of the ABC-transporter genes CgCDR1, CgCDR2, and CgSNQ2, which are mediators of azole resistance. Single-point mutations in CgPDR1 are known to increase the expression of at least CgCDR1 and CgCDR2 and thus to contribute to azole resistance of clinical isolates. In this study, we investigated the incidence of CgPDR1 mutations in a large collection of clinical isolates and tested their relevance, not only to azole resistance in vitro and in vivo, but also to virulence. The comparison of CgPDR1 alleles from azole-susceptible and azole-resistant matched isolates enabled the identification of 57 amino acid substitutions, each positioned in distinct CgPDR1 alleles. These substitutions, which could be grouped into three different “hot spots,” were gain of function (GOF) mutations since they conferred hyperactivity to CgPdr1p revealed by constitutive high expression of ABC-transporter genes. Interestingly, the major transporters involved in azole resistance (CgCDR1, CgCDR2, and CgSNQ2) were not always coordinately expressed in presence of specific CgPDR1 GOF mutations, thus suggesting that these are rather trans-acting elements (GOF in CgPDR1) than cis-acting elements (promoters) that lead to azole resistance by upregulating specific combinations of ABC-transporter genes. Moreover, C. glabrata isolates complemented with CgPDR1 hyperactive alleles were not only more virulent in mice than those with wild type alleles, but they also gained fitness in the same animal model. The presence of CgPDR1 hyperactive alleles also contributed to fluconazole treatment failure in the mouse model. In conclusion, this study shows for the first time that CgPDR1 mutations are not only responsible for in vitro/in vivo azole resistance but that they can also confer a selective advantage under host conditions

    Early diagnosis of candidemia in intensive care unit patients with sepsis: a prospective comparison of (1→3)-β-D-glucan assay, Candida score, and colonization index

    Get PDF
    The culture-independent serum (1\u21923)-\u3b2-D-glucan (BG) detection test may allow early diagnosis of invasive fungal disease, but its clinical usefulness needs to be firmly established. A prospective single-center observational study was conducted to compare the diagnostic value of BG assay, Candida score (CS), and colonization index in intensive care unit (ICU) patients at risk for Candida sepsis

    In vitro Evaluation of BACT/ALERT® VIRTUO®, BACT/ALERT 3D®, and BACTEC™ FX Automated Blood Culture Systems for Detection of Microbial Pathogens Using Simulated Human Blood Samples

    Get PDF
    Blood culture (BC) is still the standard for diagnosing bloodstream infections (BSIs), especially those caused by bacteria and fungi. Infection-complicating sepsis or septic shock often occurs at BSI onset, making necessary to improve the diagnostic yield of positive BCs. Among the BC systems currently available, the BACT/ALERT® VIRTUO® (VIRTUO) system has been developed to shorten time to detection (TTD) of positive BCs. In this study, we assessed TTD for 330 clinically relevant species including 14 Gram-positive, 14 Gram-negative, and 5 yeast isolates in spiked human blood samples that were tested in parallel with VIRTUO BACT/ALERT® 3D (BTA3D) and BACTEC™ FX (BACTEC) systems. We inoculated 30 colony-forming unit (CFU) from each microbial suspension into BACT/ALERT® Plus or BACTEC™ Plus (aerobic/anaerobic or pediatric) BC bottles, and we used two different blood volumes to simulate, respectively, the BCs collected from adult and pediatric patients. Of 2,610 bottles tested, 2,600 (99.6%) signaled positive in the three systems. Only the BACTEC system did not detect Staphylococcus lugdunensis isolates in anaerobic bottles. Among adult simulated cultures, the median TTD was significantly shorter for aerobic/anaerobic bottles incubated in VIRTUO (11.6 h and 10.1 h) compared to bottles incubated in either BTA3D (13.3 and 12.3 h) or BACTEC (13.5 and 12.2 h) system. Among pediatric simulated cultures, the median TTD was significantly shorter for bottles incubated in VIRTUO (11.2 h) compared to bottles incubated in either the BTA3D (13.0 h) or BACTEC (12.5 h) system. Compared to BTA3D and/or BACTEC systems, VIRTUO allowed faster growth detection for most of the 33 microbial species tested. Notable examples were Salmonella spp. (7.4 h by VIRTUO vs. 10.1 h and 9.2 h by either BTA3D or BACTEC) and Streptococcus agalactiae (8.1 h by VIRTUO vs. 10.3 and 9.4 h by either BTA3D or BACTEC). The few notable exceptions included Stenotrophomonas maltophilia and some Candida species. Together, these findings confirm that VIRTUO has greater potential of improving the laboratory detection of bacteremia and fungemia than the progenitor BTA3D or the competitor BACTEC system

    The synthetic killer peptide KP impairs Candida albicans biofilm in vitro

    Get PDF
    Candida albicans is a commensal organism, commonly inhabiting mucosal surfaces of healthy individuals, as a part of the resident microbiota. However, in susceptible hosts, especially hospitalized and/or immunocompromised patients, it may cause a wide range of infections. The presence of abiotic substrates, such as central venous or urinary catheters, provides an additional niche for Candida attachment and persistence, particularly via biofilm development. Furthermore, Candida biofilm is poorly susceptible to most antifungals, including azoles. Here we investigated the effects of a synthetic killer peptide (KP), known to be active in vitro, ex vivo and/or in vivo against different pathogens, on C. albicans biofilm. Together with a scrambled peptide used as a negative control, KP was tested against Candida biofilm at different stages of development. A reference strain, two fluconazole-resistant and two fluconazole-susceptible C. albicans clinical isolates were used. KP-induced C. albicans oxidative stress response and membrane permeability were also analysed. Moreover, the effect of KP on transcriptional profiles of C. albicans genes involved in different stages of biofilm development, such as cell adhesion, hyphal development and extracellular matrix production, was evaluated. Our results clearly show that the treatment with KP strongly affected the capacity of C. albicans to form biofilm and significantly impairs preformed mature biofilm. KP treatment resulted in an increase in C. albicans oxidative stress response and membrane permeability; also, biofilm-related genes expression was significantly reduced. Comparable inhibitory effects were observed in all the strains employed, irrespective of their resistance or susceptibility to fluconazole. Finally, KP-mediated inhibitory effects were observed also against a catheter-associated C. albicans biofilm. This study provides the first evidence on the KP effectiveness against C. albicans biofilm, suggesting that KP may be considered as a potential novel tool for treatment and prevention of biofilm-related C. albicans infections

    Antimicrobial susceptibility testing of pathogens isolated from blood culture: a performance comparison of Accelerate Pheno (TM) and VITEK (R) 2 systems with the broth microdilution method

    Get PDF
    Objectives: To compare the performance of the Accelerate Pheno\u2122 system with that of the conventional phenotypic VITEK\uae 2 system for rapid antimicrobial susceptibility testing (AST) of bacterial pathogens from positive blood culture (PBC) samples, based on the reference broth microdilution (BMD) method. Methods: Prospectively collected PBCs that represented patient-unique bloodstream infection episodes were included. For PBC samples showing monomicrobial growth (n\u2009=\u200986), AST was performed using both Accelerate Pheno\u2122 and VITEK\uae 2 systems directly from PBC broth. Colony isolates derived from subculture of PBC broth were then used for BMD testing. AST results were interpreted according to 2017 EUCAST breakpoints. Results: The overall categorical agreement between Accelerate Pheno\u2122 system and BMD was 92.7% (467/504) for Gram-negative organisms and 99.0% (95/96) for Gram-positive organisms, with rates for very major errors of 3.6% (6/166), major errors 2.2% (9/416) and minor errors 3.8% (23/600). The overall categorical agreement between the VITEK\uae 2 system and BMD was 91.7% (463/505) for Gram-negative organisms and 99.0% (97/98) for Gram-positive organisms, with rates of very major errors of 2.4% (4/169), major errors 1.0% (4/416) and minor errors 5.8% (35/603). Importantly, unlike the VITEK\uae 2 system, no false-susceptible results occurred with two colistin-resistant organism-growing PBCs tested using the Accelerate Pheno\u2122 system. Conclusions: Based on these findings, the Accelerate Pheno\u2122 system can be a valid alternative for the rapid AST of Gram-negative and Gram-positive bacteria in bloodstream infections
    corecore