16 research outputs found

    Standardized whole-blood transcriptional profiling enables the deconvolution of complex induced immune responses

    Get PDF
    Figura como autor también el Milieu Intérieur ConsortiumSystems approaches for the study of immune signaling pathways have been traditionally based on purified cells or cultured lines. However, in vivo responses involve the coordinated action of multiple cell types, which interact to establish an inflammatory microenvironment. We employed standardized whole-blood stimulation systems to test the hypothesis that responses to Toll-like receptor ligands or whole microbes can be defined by the transcriptional signatures of key cytokines. We found 44 genes, identified using Support Vector Machine learning, that captured the diversity of complex innate immune responses with improved segregation between distinct stimuli. Furthermore, we used donor variability to identify shared inter-cellular pathways and trace cytokine loops involved in gene expression. This provides strategies for dimension reduction of large datasets and deconvolution of innate immune responses applicable for characterizing immunomodulatory molecules. Moreover, we provide an interactive R-Shiny application with healthy donor reference values for induced inflammatory genes

    Tuberculosis alters immune-metabolic pathways resulting in perturbed IL-1 responses

    Get PDF
    Tuberculosis (TB) remains a major public health problem and we lack a comprehensive understanding of how Mycobacterium tuberculosis (M. tb) infection impacts host immune responses. We compared the induced immune response to TB antigen, BCG and IL-1β stimulation between latently M. tb infected individuals (LTBI) and active TB patients. This revealed distinct responses between TB/LTBI at transcriptomic, proteomic and metabolomic levels. At baseline, we identified a novel immune-metabolic association between pregnane steroids, the PPARγ pathway and elevated plasma IL-1ra in TB. We observed dysregulated IL-1 responses after BCG stimulation in TB patients, with elevated IL-1ra responses being explained by upstream TNF differences. Additionally, distinct secretion of IL-1α/IL-1β in LTBI/TB after BCG stimulation was associated with downstream differences in granzyme mediated cleavage. Finally, IL-1β driven signalling was dramatically perturbed in TB disease but was completely restored after successful treatment. This study improves our knowledge of how immune responses are altered during TB disease, and may support the design of improved preventive and therapeutic tools, including host-directed strategies

    Standardized Whole-Blood Transcriptional Profiling Enables the Deconvolution of Complex Induced Immune Responses

    Get PDF
    SummarySystems approaches for the study of immune signaling pathways have been traditionally based on purified cells or cultured lines. However, in vivo responses involve the coordinated action of multiple cell types, which interact to establish an inflammatory microenvironment. We employed standardized whole-blood stimulation systems to test the hypothesis that responses to Toll-like receptor ligands or whole microbes can be defined by the transcriptional signatures of key cytokines. We found 44 genes, identified using Support Vector Machine learning, that captured the diversity of complex innate immune responses with improved segregation between distinct stimuli. Furthermore, we used donor variability to identify shared inter-cellular pathways and trace cytokine loops involved in gene expression. This provides strategies for dimension reduction of large datasets and deconvolution of innate immune responses applicable for characterizing immunomodulatory molecules. Moreover, we provide an interactive R-Shiny application with healthy donor reference values for induced inflammatory genes

    Enhanced TLR3 responsiveness in hepatitis C virus resistant women from the Irish anti-D cohort

    No full text
    Cytokine data presented in this manuscript is available at https://dx.doi.org/10.17632/m65wh4vc9z.1. NanoString data is available at https://data.mendeley.com/datasets/z4nr7p7ry7. Additional data reported in this paper will be shared by the lead contact upon request.International audienceNatural resistance to infection is an overlooked outcome after hepatitis C virus (HCV) exposure. Between 1977 and 1979, 1,200 Rhesus D-negative Irish women were exposed to HCV-contaminated anti-D immunoglobulin. Here, we investigate why some individuals appear to resist infection despite exposure (exposed seronegative [ESN]). We screen HCV-resistant and -susceptible donors for anti-HCV adaptive immune responses using ELISpots and VirScan to profile antibodies against all know human viruses. We perform standardized ex vivo whole blood stimulation (TruCulture) assays with antiviral ligands and assess antiviral responses using NanoString transcriptomics and Luminex proteomics. We describe an enhanced TLR3-type I interferon response in ESNs compared with seropositive women. We also identify increased inflammatory cytokine production in response to polyIC in ESNs compared with seropositive women. These enhanced responses may have contributed to innate immune protection against HCV infection in our cohort

    Anterior gradient proteins in gastrointestinal cancers: from cell biology to pathophysiology

    No full text
    International audienceMost of the organs of the digestive tract comprise secretory epithelia that require specialized molecular machines to achieve their functions. As such anterior gradient (AGR) proteins, which comprise AGR1, AGR2, and AGR3, belong to the protein disulfide isomerase family, and are involved in secretory and transmembrane protein biogenesis in the endoplasmic reticulum. They are generally expressed in epithelial cells with high levels in most of the digestive tract epithelia. To date, the vast majority of the reports concern AGR2, which has been shown to exhibit various subcellular localizations and exert pro-oncogenic functions. AGR2 overexpression has recently been associated with a poor prognosis in digestive cancers. AGR2 is also involved in epithelial homeostasis. Its deletion in mice results in severe diffuse gut inflammation, whereas in inflammatory bowel diseases, the secretion of AGR2 in the extracellular milieu participates in the reshaping of the cellular microenvironment. AGR2 thus plays a key role in inflammation and oncogenesis and may represent a therapeutic target of interest. In this review, we summarize the already known roles and mechanisms of action of the AGR family proteins in digestive diseases, their expression in the healthy digestive tract, and in digestive oncology. At last, we discuss the potential diagnostic and therapeutic implications underlying the biology of AGR proteins

    Standardized Whole-Blood Transcriptional Profiling Enables the Deconvolution of Complex Induced Immune Responses.

    Get PDF
    International audienceSystems approaches for the study of immune signaling pathways have been traditionally based on purified cells or cultured lines. However, in vivo responses involve the coordinated action of multiple cell types, which interact to establish an inflammatory microenvironment. We employed standardized whole-blood stimulation systems to test the hypothesis that responses to Toll-like receptor ligands or whole microbes can be defined by the transcriptional signatures of key cytokines. We found 44 genes, identified using Support Vector Machine learning, that captured the diversity of complex innate immune responses with improved segregation between distinct stimuli. Furthermore, we used donor variability to identify shared inter-cellular pathways and trace cytokine loops involved in gene expression. This provides strategies for dimension reduction of large datasets and deconvolution of innate immune responses applicable for characterizing immunomodulatory molecules. Moreover, we provide an interactive R-Shiny application with healthy donor reference values for induced inflammatory genes

    Distinctive roles of age, sex, and genetics in shaping transcriptional variation of human immune responses to microbial challenges.

    Get PDF
    The contribution of host genetic and nongenetic factors to immunological differences in humans remains largely undefined. Here, we generated bacterial-, fungal-, and viral-induced immune transcriptional profiles in an age- and sex-balanced cohort of 1,000 healthy individuals and searched for the determinants of immune response variation. We found that age and sex affected the transcriptional response of most immune-related genes, with age effects being more stimulus-specific relative to sex effects, which were largely shared across conditions. Although specific cell populations mediated the effects of age and sex on gene expression, including CD8 <sup>+</sup> T cells for age and CD4 <sup>+</sup> T cells and monocytes for sex, we detected a direct effect of these intrinsic factors for the majority of immune genes. The mapping of expression quantitative trait loci (eQTLs) revealed that genetic factors had a stronger effect on immune gene regulation than age and sex, yet they affected a smaller number of genes. Importantly, we identified numerous genetic variants that manifested their regulatory effects exclusively on immune stimulation, including a Candida albicans-specific master regulator at the CR1 locus. These response eQTLs were enriched in disease-associated variants, particularly for autoimmune and inflammatory disorders, indicating that differences in disease risk may result from regulatory variants exerting their effects only in the presence of immune stress. Together, this study quantifies the respective effects of age, sex, genetics, and cellular heterogeneity on the interindividual variability of immune responses and constitutes a valuable resource for further exploration in the context of different infection risks or disease outcomes

    Distinctive roles of age, sex, and genetics in shaping transcriptional variation of human immune responses to microbial challenges

    No full text
    The contribution of host genetic and nongenetic factors to immunological differences in humans remains largely undefined. Here, we generated bacterial-, fungal-, and viral-induced immune transcriptional profiles in an age- and sex-balanced cohort of 1,000 healthy individuals and searched for the determinants of immune response variation. We found that age and sex affected the transcriptional response of most immune-related genes, with age effects being more stimulus-specific relative to sex effects, which were largely shared across conditions. Although specific cell populations mediated the effects of age and sex on gene expression, including CD8+ T cells for age and CD4+ T cells and monocytes for sex, we detected a direct effect of these intrinsic factors for the majority of immune genes. The mapping of expression quantitative trait loci (eQTLs) revealed that genetic factors had a stronger effect on immune gene regulation than age and sex, yet they affected a smaller number of genes. Importantly, we identified numerous genetic variants that manifested their regulatory effects exclusively on immune stimulation, including a Candida albicans-specific master regulator at the CR1 locus. These response eQTLs were enriched in disease-associated variants, particularly for autoimmune and inflammatory disorders, indicating that differences in disease risk may result from regulatory variants exerting their effects only in the presence of immune stress. Together, this study quantifies the respective effects of age, sex, genetics, and cellular heterogeneity on the interindividual variability of immune responses and constitutes a valuable resource for further exploration in the context of different infection risks or disease outcomes

    Tuberculosis alters immune-metabolic pathways resulting in perturbed IL-1 responses

    No full text
    Tuberculosis (TB) remains a major public health problem with host-directed therapeutics offering potential as novel treatment strategies. However, their successful development still requires a comprehensive understanding of how Mycobacterium tuberculosis ( M.tb ) infection impacts immune responses. To address this challenge, we applied standardised immunomonitoring tools to compare TB antigen, BCG and IL-1β induced immune responses between individuals with latent M.tb infection (LTBI) and active TB disease, at diagnosis and after cure. This revealed distinct responses between TB and LTBI groups at transcriptomic, proteomic and metabolomic levels. At baseline, we identified pregnane steroids and the PPARγ pathway as new immune-metabolic drivers of elevated plasma IL-1ra in TB. We also observed dysregulated induced IL-1 responses after BCG stimulation in TB patients. Elevated IL-1 antagonist responses were explained by upstream differences in TNF responses, while for IL-1 agonists it was due to downstream differences in granzyme mediated cleavage. Finally, the immune response to IL-1β driven signalling was also dramatically perturbed in TB disease but was completely restored after successful antibiotic treatment. This systems immunology approach improves our knowledge of how immune responses are altered during TB disease, and may support design of improved diagnostic, prophylactic and therapeutic tools

    Tuberculosis alters immune-metabolic pathways resulting in perturbed IL-1 responses

    Get PDF
    Tuberculosis (TB) remains a major public health problem with host-directed therapeutics offering potential as novel treatment strategies. However, their successful development still requires a comprehensive understanding of how Mycobacterium tuberculosis ( M.tb ) infection impacts immune responses. To address this challenge, we applied standardised immunomonitoring tools to compare TB antigen, BCG and IL-1β induced immune responses between individuals with latent M.tb infection (LTBI) and active TB disease, at diagnosis and after cure. This revealed distinct responses between TB and LTBI groups at transcriptomic, proteomic and metabolomic levels. At baseline, we identified pregnane steroids and the PPARγ pathway as new immune-metabolic drivers of elevated plasma IL-1ra in TB. We also observed dysregulated induced IL-1 responses after BCG stimulation in TB patients. Elevated IL-1 antagonist responses were explained by upstream differences in TNF responses, while for IL-1 agonists it was due to downstream differences in granzyme mediated cleavage. Finally, the immune response to IL-1β driven signalling was also dramatically perturbed in TB disease but was completely restored after successful antibiotic treatment. This systems immunology approach improves our knowledge of how immune responses are altered during TB disease, and may support design of improved diagnostic, prophylactic and therapeutic tools
    corecore