5,288 research outputs found

    Universal quantum computation with the Orbital Angular Momentum of a single photon

    Full text link
    We prove that a single photon with quantum data encoded in its orbital angular momentum can be manipulated with simple optical elements to provide any desired quantum computation. We will show how to build any quantum unitary operator using beamsplitters, phase shifters, holograms and an extraction gate based on quantum interrogation. The advantages and challenges of these approach are then discussed, in particular the problem of the readout of the results.Comment: First version. Comments welcom

    Environmental sensitivity of n-i-n and undoped single GaN nanowire photodetectors

    Full text link
    In this work, we compare the photodetector performance of single defect-free undoped and n-in GaN nanowires (NWs). In vacuum, undoped NWs present a responsivity increment, nonlinearities and persistent photoconductivity effects (~ 100 s). Their unpinned Fermi level at the m-plane NW sidewalls enhances the surface states role in the photodetection dynamics. Air adsorbed oxygen accelerates the carrier dynamics at the price of reducing the photoresponse. In contrast, in n-i-n NWs, the Fermi level pinning at the contact regions limits the photoinduced sweep of the surface band bending, and hence reduces the environment sensitivity and prevents persistent effects even in vacuum

    Nonlinear interfaces: intrinsically nonparaxial regimes and effects

    Get PDF
    The behaviour of optical solitons at planar nonlinear boundaries is a problem rich in intrinsically nonparaxial regimes that cannot be fully addressed by theories based on the nonlinear Schrödinger equation. For instance, large propagation angles are typically involved in external refraction at interfaces. Using a recently proposed generalized Snell's law for Helmholtz solitons, we analyse two such effects: nonlinear external refraction and total internal reflection at interfaces where internal and external refraction, respectively, would be found in the absence of nonlinearity. The solutions obtained from the full numerical integration of the nonlinear Helmholtz equation show excellent agreement with the theoretical predictions

    Helmholtz bright and boundary solitons

    Get PDF
    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic Non-Linear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently-reported Helmholtz bright solitons, for this type of polynomial non-linearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterpart

    Characterization of dynamical regimes and entanglement sudden death in a microcavity quantum - dot system

    Full text link
    The relation between the dynamical regimes (weak and strong coupling) and entanglement for a dissipative quantum - dot microcavity system is studied. In the framework of a phenomenological temperature model an analysis in both, temporal (population dynamics) and frequency domain (photoluminescence) is carried out in order to identify the associated dynamical behavior. The Wigner function and concurrence are employed to quantify the entanglement in each regime. We find that sudden death of entanglement is a typical characteristic of the strong coupling regime.Comment: To appear in Journal of Physics: Condensed Matte

    Korteweg-de Vries description of Helmholtz-Kerr dark solitons

    Get PDF
    A wide variety of different physical systems can be described by a relatively small set of universal equations. For example, small-amplitude nonlinear Schrödinger dark solitons can be described by a Korteweg-de Vries (KdV) equation. Reductive perturbation theory, based on linear boosts and Gallilean transformations, is often employed to establish connections to and between such universal equations. Here, a novel analytical approach reveals that the evolution of small-amplitude Helmholtz–Kerr dark solitons is also governed by a KdV equation. This broadens the class of nonlinear systems that are known to possess KdV soliton solutions, and provides a framework for perturbative analyses when propagation angles are not negligibly small. The derivation of this KdV equation involves an element that appears new to weakly nonlinear analyses, since transformations are required to preserve the rotational symmetry inherent to Helmholtz-type equations

    Bistable Helmholtz bright solitons in saturable materials

    Get PDF
    We present, to the best of our knowledge, the first exact analytical solitons of a nonlinear Helmholtz equation with a saturable refractive-index model. These new two-dimensional spatial solitons have a bistable characteristic in some parameter regimes, and they capture oblique (arbitrary-angle) beam propagation in both the forward and backward directions. New conservation laws are reported, and the classic paraxial solution is recovered in an appropriate multiple limit. Analysis and simulations examine the stability of both solution branches, and stationary Helmholtz solitons are found to emerge from a range of perturbed input beams
    • …
    corecore