218 research outputs found

    Purification and Reconstitution of the Glutamate Carrier GltT of the Thermophilic Bacterium Bacillus stearothermophilus

    Get PDF
    An affinity tag consisting of six adjacent histidine residues followed by an enterokinase cleavage site was genetically engineered at the N-terminus of the glutamate transport protein GltT of the thermophilic bacterium Bacillus stearothermophilus. The fusion protein was expressed in Escherichia coli and shown to transport glutamate. The highest levels of expression were observed in E. coli strain DH5α grown on rich medium. The protein could be purified in a single step by Ni2+-NTA affinity chromatography after solubilization of the cytoplasmic membranes with the detergent Triton X100. Purified GltT was reconstituted in an active state in liposomes prepared from E. coli phospholipids. The protein was reconstituted in detergent-treated preformed liposomes, followed by removal of the detergent with polystyrene beads. Active reconstitution was realized with a wide range of Triton X100 concentrations. Neither the presence of glycerol, phospholipids, nor substrates of the transporter was necessary during the purification and reconstitution procedure to keep the enzyme in an active state. In B. stearothermophilus, GltT translocates glutamate in symport with protons or sodium ions. In membrane vesicles derived from E. coli cells expressing GltT, the Na+ ion dependency seems to be lost, suggesting a role for the lipid environment in the cation specificity. In agreement with the last observation, glutamate transport catalyzed by purified GltT reconstituted in E. coli phospholipid is driven by an electrochemical gradient of H+ but not of Na+.

    Specialist versus primary care prostate cancer follow-up:A process evaluation of a randomized controlled trial

    Get PDF
    Background: A randomized controlled trial (RCT) is currently comparing the effectiveness of specialist- versus primary care-based prostate cancer follow-up. This process evaluation assesses the reach and identified constructs for the implementation of primary care-based follow-up. Methods: A mixed-methods approach is used to assess the reach and the implementation through the Consolidated Framework for Implementation Research. We use quantitative data to evaluate the reach of the RCT and qualitative data (interviews) to indicate the perspectives of patients (n = 15), general practitioners (GPs) (n = 10), and specialists (n = 8). Thematic analysis is used to analyze the interview transcripts. Results: In total, we reached 402 (67%) patients from 12 hospitals and randomized them to specialist- (n = 201) or to primary care-based (n = 201) follow-up. From the interviews, we identify several advantages of primary care- versus specialist-based follow-up: it is closer to home, more accessible, and the relationship is more personal. Nevertheless, participants also identified challenges: guidelines should be implemented, communication and collaboration between primary and secondary care should be improved, quality indicators should be collected, and GPs should be compensated. Conclusion: Within an RCT context, 402 (67%) patients and their GPs were willing to receive/provide primary care-based follow-up. If the RCT shows that primary care is equally as effective as specialist-based follow-up, the challenges identified in this study need to be addressed to enable a smooth transition of prostate cancer follow-up to primary care. Netherlands Trial Registry, Trial NL7068 (NTR7266)

    Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle.

    Get PDF
    Chaperones TAPBPR and tapasin associate with class I major histocompatibility complexes (MHC-I) to promote optimization (editing) of peptide cargo. Here, we use solution NMR to investigate the mechanism of peptide exchange. We identify TAPBPR-induced conformational changes on conserved MHC-I molecular surfaces, consistent with our independently determined X-ray structure of the complex. Dynamics present in the empty MHC-I are stabilized by TAPBPR and become progressively dampened with increasing peptide occupancy. Incoming peptides are recognized according to the global stability of the final pMHC-I product and anneal in a native-like conformation to be edited by TAPBPR. Our results demonstrate an inverse relationship between MHC-I peptide occupancy and TAPBPR binding affinity, wherein the lifetime and structural features of transiently bound peptides control the regulation of a conformational switch located near the TAPBPR binding site, which triggers TAPBPR release. These results suggest a similar mechanism for the function of tapasin in the peptide-loading complex

    Calcium modulates force sensing by the von Willebrand factor A2 domain

    Get PDF
    von Willebrand factor (VWF) multimers mediate primary adhesion and aggregation of platelets. VWF potency critically depends on multimer size, which is regulated by a feedback mechanism involving shear-induced unfolding of the VWF-A2 domain and cleavage by the metalloprotease ADAMTS-13. Here we report crystallographic and single-molecule optical tweezers data on VWF-A2 providing mechanistic insight into calcium-mediated stabilization of the native conformation that protects A2 from cleavage by ADAMTS-13. Unfolding of A2 requires higher forces when calcium is present and primarily proceeds through a mechanically stable intermediate with non-native calcium coordination. Calcium further accelerates refolding markedly, in particular, under applied load. We propose that calcium improves force sensing by allowing reversible force switching under physiologically relevant hydrodynamic conditions. Our data show for the first time the relevance of metal coordination for mechanical properties of a protein involved in mechanosensing

    Permissivity of the NCI-60 cancer cell lines to oncolytic Vaccinia Virus GLV-1h68

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oncolytic viral therapy represents an alternative therapeutic strategy for the treatment of cancer. We previously described GLV-1h68, a modified Vaccinia Virus with exclusive tropism for tumor cells, and we observed a cell line-specific relationship between the ability of GLV-1h68 to replicate in vitro and its ability to colonize and eliminate tumor in vivo.</p> <p>Methods</p> <p>In the current study we surveyed the in vitro permissivity to GLV-1h68 replication of the NCI-60 panel of cell lines. Selected cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain. In order to identify correlates of permissity to viral infection, we measured transcriptional profiles of the cell lines prior infection.</p> <p>Results</p> <p>We observed highly heterogeneous permissivity to VACV infection amongst the cell lines. The heterogeneity of permissivity was independent of tissue with the exception of B cell derivation. Cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain and a significant correlation was found suggesting a common permissive phenotype. While no clear transcriptional pattern could be identified as predictor of permissivity to infection, some associations were observed suggesting multifactorial basis permissivity to viral infection.</p> <p>Conclusions</p> <p>Our findings have implications for the design of oncolytic therapies for cancer and offer insights into the nature of permissivity of tumor cells to viral infection.</p

    An Automated Phenotype-Driven Approach (GeneForce) for Refining Metabolic and Regulatory Models

    Get PDF
    Integrated constraint-based metabolic and regulatory models can accurately predict cellular growth phenotypes arising from genetic and environmental perturbations. Challenges in constructing such models involve the limited availability of information about transcription factor—gene target interactions and computational methods to quickly refine models based on additional datasets. In this study, we developed an algorithm, GeneForce, to identify incorrect regulatory rules and gene-protein-reaction associations in integrated metabolic and regulatory models. We applied the algorithm to refine integrated models of Escherichia coli and Salmonella typhimurium, and experimentally validated some of the algorithm's suggested refinements. The adjusted E. coli model showed improved accuracy (∼80.0%) for predicting growth phenotypes for 50,557 cases (knockout mutants tested for growth in different environmental conditions). In addition to identifying needed model corrections, the algorithm was used to identify native E. coli genes that, if over-expressed, would allow E. coli to grow in new environments. We envision that this approach will enable the rapid development and assessment of genome-scale metabolic and regulatory network models for less characterized organisms, as such models can be constructed from genome annotations and cis-regulatory network predictions
    corecore