29 research outputs found

    The alpha-effect in cyclic secondary amines: new scaffolds for iminium ion accelerated transformations

    Get PDF
    Five-membered secondary amine heterocycles containing an α-heteroatom were prepared and shown to be ineffective as catalysts for the iminium ion catalysed Diels–Alder reaction between cinnamaldehyde and cyclopentadiene. Their six-membered counterparts proved to be highly active catalysts. In stark contrast, the catalytic activity observed when comparing the non α-heteroatom cyclic amines proline methyl ester and methyl pipecolinate showed the five-membered ring amine was significantly more active. Concurrent density functional theoretical calculations suggest a rationale for the observed trends in reactivity, highlighting that LUMO activation through an iminium ion intermediate plays a key role in catalytic activity

    Discovery of a quinoline-4-carboxamide derivative with a novel mechanism of action, multistage antimalarial activity, and potent in vivo efficacy

    Get PDF
    The antiplasmodial activity, DMPK properties, and efficacy of a series of quinoline-4-carboxamides are described. This series was identified from a phenotypic screen against the blood stage of Plasmodium falciparum (3D7) and displayed moderate potency but with suboptimal physicochemical properties and poor microsomal stability. The screening hit (1, EC50 = 120 nM) was optimized to lead molecules with low nanomolar in vitro potency. Improvement of the pharmacokinetic profile led to several compounds showing excellent oral efficacy in the P. berghei malaria mouse model with ED90 values below 1 mg/kg when dosed orally for 4 days. The favorable potency, selectivity, DMPK properties, and efficacy coupled with a novel mechanism of action, inhibition of translation elongation factor 2 (PfEF2), led to progression of 2 (DDD107498) to preclinical development

    Trisubstituted Pyrimidines as Efficacious and Fast-acting Antimalarials

    Get PDF
    In this paper we describe the optimization of a phenotypic hit against Plasmodium falciparum, based on a trisubstituted pyrimidine scaffold. This led to compounds with good pharmacokinetics and oral activity in a P. berghei mouse model of malaria. The most promising compound (13) showed a reduction in parasitemia of 96% when dosed at 30 mg/kg orally once a day for 4 days in the P. berghei mouse model of malaria. It also demonstrated a rapid rate of clearance of the erythrocytic stage of P. falciparum in the SCID mouse model with an ED90 of 11.7 mg/kg when dosed orally. Unfortunately, the compound is a potent inhibitor of cytochrome P450 enzymes, probably due to a 4-pyridyl substituent. Nevertheless, this is a lead molecule with a potentially useful antimalarial profile, which could either be further optimized or be used for target hunting

    Rapid access to in situ generated (R)- and (S)-2-furyloxirane and associated regioselective nucleophilic ring-opening studies

    No full text
    Reported herein is the facile preparation of (R)- and (S)-2-furyloxirane from D- and L-tri-O-acetyl glucal and associated regioselective nucleophilic ring-opening studies

    Evaluating the Baylis-Hillman reaction of cyclic enones using surfactants in water

    No full text
    Conjugated cyclic enones react smoothly in water with a variety of aldehydes (Baylis-Hillman reaction) in the presence of surfactants above their critical micelle concentrations (CMC)
    corecore