19 research outputs found
Spatial stochastic resonance in 1D Ising systems
The 1D Ising model is analytically studied in a spatially periodic and
oscillatory external magnetic field using the transfer-matrix method. For low
enough magnetic field intensities the correlation between the external magnetic
field and the response in magnetization presents a maximum for a given
temperature. The phenomenon can be interpreted as a resonance phenomenon
induced by the stochastic heatbath. This novel "spatial stochastic resonance"
has a different origin from the classical stochastic resonance phenomenon.Comment: REVTex, 5 pages, 3 figure
Universal Cellular Automata and Class 4
Wolfram has provided a qualitative classification of cellular automata(CA)
rules according to which, there exits a class of CA rules (called Class 4)
which exhibit complex pattern formation and long-lived dynamical activity (long
transients). These properties of Class 4 CA's has led to the conjecture that
Class 4 rules are Universal Turing machines i.e. they are bases for
computational universality. We describe an embedding of a ``small'' universal
Turing machine due to Minsky, into a cellular automaton rule-table. This
produces a collection of cellular automata, all of which are
computationally universal. However, we observe that these rules are distributed
amongst the various Wolfram classes. More precisely, we show that the
identification of the Wolfram class depends crucially on the set of initial
conditions used to simulate the given CA. This work, among others, indicates
that a description of complex systems and information dynamics may need a new
framework for non-equilibrium statistical mechanics.Comment: Latex, 10 pages, 5 figures uuencode
Response of Adsorbed Polyelectrolyte Monolayers to Changes in Solution Composition
Reflectometry and quartz crystal microbalance are used to study the response of adsorbed polyelectrolyte monolayers to solutions of variable composition. These techniques respectively yield the dry and wet masses of the adsorbed layer, and by combing these results, one obtains the water content and the thickness of the polyelectrolyte films. The systems investigated are films of adsorbed poly(allyl amine) (PAH) and poly-l-lysine (PLL) on silica and films of poly(styrene sulfonate) (PSS) on amino-functionalized silica. When such films are adsorbed from concentrated polyelectrolyte solutions containing high levels of salt, they are found to swell reversibly up to a factor of 2 when incubated in solutions of low salt. This swelling is attributed to the strengthening of repulsive electrostatic interactions between the adsorbed polyelectrolyte chains. PAH films may also swell upon decrease of pH, and collapse upon a pH increase. This transition shows a marked hysteresis and can be rationalized by the competition of electrostatic repulsions between the chains and their attraction to the surface. The presently observed swelling phenomena are caused by a collective process driven by the electrostatic repulsion between the densely adsorbed polyelectrolyte chains. Such responsive layers are only obtained by adsorption from high polyelectrolyte and salt concentrations. Layers absorbed at low polyelectrolyte and salt concentrations show only minor swelling effects, since the adsorbed polyelectrolytes layers are dilute and the adsorbed polyelectrolyte chains interact only weakly