54 research outputs found

    Disorders of peroxisome biogenesis due to mutations in PEX1: phenotypes and PEX1 protein levels

    Get PDF
    Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD) are clinically overlapping syndromes, collectively called “peroxisome biogenesis disorders” (PBDs), with clinical features being most severe in ZS and least pronounced in IRD. Inheritance of these disorders is autosomal recessive. The peroxisome biogenesis disorders are genetically heterogeneous, having at least 12 different complementation groups (CGs). The gene affected in CG1 is PEX1. Approximately 65% of the patients with PBD harbor mutations in PEX1. In the present study, we used SSCP analysis to evaluate a series of patients belonging to CG1 for mutations in PEX1 and studied phenotype-genotype correlations. A complete lack of PEX1 protein was found to be associated with severe ZS; however, residual amounts of PEX1 protein were found in patients with the milder phenotypes, NALD and IRD. The majority of these latter patients carried at least one copy of the common G843D allele. When patient fibroblasts harboring this allele were grown at 30°C, a two- to threefold increase in PEX1 protein levels was observed, associated with a recovery of peroxisomal function. This suggests that the G843D missense mutation results in a misfolded protein, which is more stable at lower temperatures. We conclude that the search for the factors and/or mechanisms that determine the stability of mutant PEX1 protein by high-throughput procedures will be a first step in the development of therapeutic strategies for patients with mild PBDs

    Novel PEX1 mutations and genotype=phenotype correlations in Australasian peroxisome biogenesis disorder patients

    No full text
    The peroxisome biogenesis disorders (PBDs) are a group of neuronal migration/neurodegenerative disorders that arise from defects in PEX genes. A major subgroup of the PBDs includes Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD). These three disorders represent a clinical continuum with Zellweger syndrome the most severe. Mutations in the PEX1 gene, which encodes a protein of the AAA ATPase family involved in peroxisome matrix protein import, account for the genetic defect in more than half of the patients in this PBD subgroup. We report here on the results of PEX1 mutation detection in an Australasian cohort of PEX1-deficient PBD patients. This screen has identified five novel mutations, including nonsense mutations in exons 14 and 19 and single nucleotide deletions in exons 5 and 18. Significantly, the allele carrying the exon 18 frameshift mutation is present at moderately high frequency (approx. 10%) in this patient cohort. The fifth mutation is a missense mutation (R798G) that attenuates, but does not abolish PEX1 function. We have evaluated the cellular impact of these novel mutations, along with that of the two most common PEX1 mutations (c.2097-2098insT and G843D), in PBD patients by determining the levels of PEX1 mRNA, PEX1 protein, and peroxisome protein import. The findings are consistent with a close correlation between cellular phenotype, disease severity, and PEX1 genotyp
    corecore