507 research outputs found

    Faraday effect : a field theoretical point of view

    Full text link
    We analyze the structure of the vacuum polarization tensor in the presence of a background electromagnetic field in a medium. We use various discrete symmetries and crossing symmetry to constrain the form factors obtained for the most general case. From these symmetry arguments, we show why the vacuum polarization tensor has to be even in the background field when there is no background medium. Taking then the background field to be purely magnetic, we evaluate the vacuum polarization to linear order in it. The result shows the phenomenon of Faraday rotation, i.e., the rotation of the plane of polarization of a plane polarized light passing through this background. We find that the usual expression for Faraday rotation, which is derived for a non-degenerate plasma in the non-relativistic approximation, undergoes substantial modification if the background is degenerate and/or relativistic. We give explicit expressions for Faraday rotation in completely degenerate and ultra-relativistic media.Comment: 20 pages, Latex, uses axodraw.st

    Non-resonant microwave absorption studies of superconducting MgB_2

    Get PDF
    Non-resonant microwave absorption(NRMA) studies of superconducting MgB_2 at a frequency of 9.43 GHz in the field range -50 Gauss to 5000 Gauss are reported. The NRMA results indicate near absence of intergranular weak links. A linear temperature dependence of the lower critical field H_c1 is observed indicating a non s-wave superconductivity. However, the phase reversal of the NRMA signal which could suggest d-wave symmetry is also not observed.Comment: 8 pages, 2 figure

    Critical State Flux Penetration and Linear Microwave Vortex Response in YBa_2Cu_3O_{7-x} Films

    Full text link
    The vortex contribution to the dc field (H) dependent microwave surface impedance Z_s = R_s+iX_s of YBa_2Cu_3O_{7-x} thin films was measured using suspended patterned resonators. Z_s(H) is shown to be a direct measure of the flux density B(H) enabling a very precise test of models of flux penetration. Three regimes of field-dependent behavior were observed: (1) Initial flux penetration occurs on very low field scales H_i(4.2K) 100Oe, (2) At moderate fields the flux penetration into the virgin state is in excellent agreement with calculations based upon the field-induced Bean critical state for thin film geometry, parametrized by a field scale H_s(4.2K) J_c*d 0.5T, (3) for very high fields H >>H_s, the flux density is uniform and the measurements enable direct determination of vortex parameters such as pinning force constants \alpha_p and vortex viscosity \eta. However hysteresis loops are in disagreement with the thin film Bean model, and instead are governed by the low field scale H_i, rather than by H_s. Geometric barriers are insufficient to account for the observed results.Comment: 20 pages, LaTeX type, Uses REVTeX style files, Submitted to Physical Review B, 600 dpi PostScript file with high resolution figures available at http://sagar.physics.neu.edu/preprints.htm

    Non-linear microwave impedance of short and long Josephson Junctions

    Full text link
    The non-linear dependence on applied acac field (bωb_{\omega}) or current (iω% i_{\omega}) of the microwave (ac) impedance Rω+iXωR_{\omega}+iX_{\omega} of both short and long Josephson junctions is calculated under a variety of excitation conditions. The dependence on the junction width is studied, for both field symmetric (current anti-symmetric) and field anti-symmetric (current symmetric) excitation configurations.The resistance shows step-like features every time a fluxon (soliton) enters the junction, with a corresponding phase slip seen in the reactance. For finite widths the interference of fluxons leads to some interesting effects which are described. Many of these calculated results are observed in microwave impedance measurements on intrinsic and fabricated Josephson junctions in the high temperature superconductors, and new effects are suggested. When a % dc field (bdcb_{dc}) or current (idci_{dc}) is applied, interesting phase locking effects are observed in the ac impedance ZωZ_{\omega}. In particular an almost periodic dependence on the dc bias is seen similar to that observed in microwave experiments at very low dc field bias. These results are generic to all systems with a cos(ϕ)\cos (\phi) potential in the overdamped limit and subjected to an ac drive.Comment: 7 pages, 11 figure

    Recent developments in the characterization of superconducting films by microwaves

    Full text link
    We describe and analyze selected surface impedance data recently obtained by different groups on cuprate, ruthenate and diboride superconducting films on metallic and dielectric substrates for fundamental studies and microwave applications. The discussion includes a first review of microwave data on MgB2, the weak-link behaviour of RABiTS-type YBa2Cu3O7-d tapes, and the observation of a strong anomalous power-dependence of the microwave losses in MgO at low temperatures. We demonstrate how microwave measurements can be used to investigate electronic, magnetic, and dielectric dissipation and relaxation in the films and substrates. The impact of such studies reaches from the extraction of microscopic information to the engineering of materials and further on to applications in power systems and communication technology.Comment: Invited contribution to EUCAS2001, accepted for publication in Physica C in its present for

    Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant

    Get PDF
    © Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    Anomalous behavior of spin wave resonances in Ga_{1-x}Mn_{x}As thin films

    Full text link
    We report ferromagnetic and spin wave resonance absorption measurements on high quality epitaxially grown Ga_{1-x}Mn_{x}As thin films. We find that these films exhibit robust ferromagnetic long-range order, based on the fact that up to seven resonances are detected at low temperatures, and the resonance structure survives to temperatures close to the ferromagnetic transition. On the other hand, we observe a spin wave dispersion which is linear in mode number, in qualitative contrast with the quadratic dispersion expected for homogeneous samples. We perform a detailed numerical analysis of the experimental data and provide analytical calculations to demonstrate that such a linear dispersion is incompatible with uniform magnetic parameters. Our theoretical analysis of the ferromagnetic resonance data, combined with the knowledge that strain-induced anisotropy is definitely present in these films, suggests that a spatially dependent magnetic anisotropy is the most likely reason behind the anomalous behavior observed.Comment: 9 pages, including 6 figure

    The Effect of Epstein-Barr Virus Latent Membrane Protein 2 Expression on the Kinetics of Early B Cell Infection

    Get PDF
    Infection of human B cells with wild-type Epstein-Barr virus (EBV) in vitro leads to activation and proliferation that result in efficient production of lymphoblastoid cell lines (LCLs). Latent Membrane Protein 2 (LMP2) is expressed early after infection and previous research has suggested a possible role in this process. Therefore, we generated recombinant EBV with knockouts of either or both protein isoforms, LMP2A and LMP2B (Δ2A, Δ2B, Δ2A/Δ2B) to study the effect of LMP2 in early B cell infection. Infection of B cells with Δ2A and Δ2A/Δ2B viruses led to a marked decrease in activation and proliferation relative to wild-type (wt) viruses, and resulted in higher percentages of apoptotic B cells. Δ2B virus infection showed activation levels comparable to wt, but fewer numbers of proliferating B cells. Early B cell infection with wt, Δ2A and Δ2B viruses did not result in changes in latent gene expression, with the exception of elevated LMP2B transcript in Δ2A virus infection. Infection with Δ2A and Δ2B viruses did not affect viral latency, determined by changes in LMP1/Zebra expression following BCR stimulation. However, BCR stimulation of Δ2A/Δ2B cells resulted in decreased LMP1 expression, which suggests loss of stability in viral latency. Long-term outgrowth assays revealed that LMP2A, but not LMP2B, is critical for efficient long-term growth of B cells in vitro. The lowest levels of activation, proliferation, and LCL formation were observed when both isoforms were deleted. These results suggest that LMP2A appears to be critical for efficient activation, proliferation and survival of EBV-infected B cells at early times after infection, which impacts the efficient long-term growth of B cells in culture. In contrast, LMP2B did not appear to play a significant role in these processes, and long-term growth of infected B cells was not affected by the absence of this protein. © 2013 Wasil et al

    Caffeoylquinic Acids Biosynthesis and Accumulation in Cynara cardunculus: State of the Art

    Get PDF
    Plant secondary metabolites are highly evolved compounds performing different functions, and have been widely exploited from food to medicine. A constant supply of phenols, a class of secondary metabolites, provides preventive and defensive mechanisms to reduce the risk of chronic diseases in human beings; among them mono- and di-caffeoylquinic acids (monoCQAs, diCQAs) have attracted a growing academic and industrial interest in recent years. In Cynara cardunculus L. the biosynthetic pathway of chlorogenic acid (CGA, 5-O-caffeoylquinic acid) has been the subject of our several recent studies. Here, we report the state of the art on the isolation and in vitro functional characterization of the genes involved in the biosynthetic pathway of the CGA: HCT (hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl-transferase), HQT (hydroxycinnamoyl-CoA quinate hydroxyl-cinnamoyl-transferase), two HQT-like genes, we named Acyltransf_1 and Acyltransf_2, and C3’H (p-coumaroyl ester 3’-hydroxylase). Plant phenolics are known to be involved in the plant stress response and we found out that in globe artichoke the exposure to UV-C induces the production of diCQAs. In UV-C treated globe artichoke leaves, the expression level of C3´H, HCT, HQT, Acyltransf_1, Acyltransf_2 genes was strongly increased, thus confirming their involvement in the synthesis of chlorogenic acid. The development of DNA-based markers for the isolated genes made it possible to locate them within the previously developed genetic maps of the species

    Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO_2 Fixation

    Get PDF
    Two major energy-related problems confront the world in the next 50 years. First, increased worldwide competition for gradually depleting fossil fuel reserves (derived from past photosynthesis) will lead to higher costs, both monetarily and politically. Second, atmospheric CO_2 levels are at their highest recorded level since records began. Further increases are predicted to produce large and uncontrollable impacts on the world climate. These projected impacts extend beyond climate to ocean acidification, because the ocean is a major sink for atmospheric CO2.1 Providing a future energy supply that is secure and CO_2-neutral will require switching to nonfossil energy sources such as wind, solar, nuclear, and geothermal energy and developing methods for transforming the energy produced by these new sources into forms that can be stored, transported, and used upon demand
    corecore