View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Wageningen University & Research Publications

Caffeoylquinic Acids Biosynthesis and Accumulation in Cynara
cardunculus: State of the Art

A. Mogha1 “ C. Comlno B. Menin', E. Portis', A. Acquadro', J. Beekwilder?,

A Hehn’, F. Bourgaud® and S. Lanteri'
DISAFA Plant Genetics and Breeding, University of Torino, via L. da Vinci 44, 10095
Grughasco (TO), Italy
? Plant Research International, PO Box 16, 6700 AA Wageningen, The Netherlands and
Laboratory of Plant Phys1010gy, Wagemngen University and Research Centre, 6708PB
Wagemngen The Netherlands
> UMR 1121 INPL-INRA Agronomie Environnement, 54505 Vandoeuvre-lés-Nancy,
France

Keywords: globe artichoke, phenolic acids, abiotic stress, genetic mapping, gene
isolation

Abstract

Plant secondary metabolites are highly evolved compounds performing
different functions, and have been widely exploited from food to medicine. A
constant supply of phenols, a class of secondary metabolites, provides preventive and
defensive mechanisms to reduce the risk of chronic diseases in human beings; among
them mono- and di-caffeoylquinic acids (monoCQAs, diCQAs) have attracted a
growing academic and industrial interest in recent years. In Cynara cardunculus L.
the biosynthetic pathway of chlorogenic acid (CGA, 5-O-caffeoylquinic acid) has
been the subject of our several recent studies. Here, we report the state of the art on
the isolation and in vitro functional characterization of the genes involved in the
biosynthetic pathway of the CGA: HCT (hydroxycinnamoyl-CoA shikimate/quinate
hydroxycinnamoyl-transferase), HQT (hydroxycinnamoyl-CoA quinate hydroxyl-
cinnamoyl-transferase), two HQT-like genes, we named Acyltransf 1 and
Acyltransf 2, and C3’H (p-coumaroyl ester 3’-hydroxylase). Plant phenolics are
known to be involved in the plant stress response and we found out that in globe
artichoke the exposure to UV-C induces the production of diCQAs. In UV-C treated
globe artichoke leaves, the expression level of C3’'H, HCT, HQT, Acyltransf 1,
Acyltransf 2 genes was strongly increased, thus confirming their involvement in the
synthesis of chlorogenic acid. The development of DNA-based markers for the
isolated genes made it possible to locate them within the previously developed
genetic maps of the species.

INTRODUCTION

Cynara cardunculus L. represents a model species for studying caffeoylquinic
acids (CQAs) biosynthesis, due its exceptionally high natural content and diversity of
these compounds. In various pharmacological test systems, extracts of plants with a high
content of CQAs exhibit hepatoprotective, anticarcinogenic, antioxidative, antibacterial,
anti-HIV, bile-expelling, as well as the ability to inhibit cholesterol biosynthesis and LDL
oxidation (Rice-Evans et al., 1997; Gebhardt, 1997; Wang et al., 2003; Lattanzio et al.,
2009).

The CGA biosynthesis pathway has been the target of detailed study, mainly in
Solanaceae species (Niggeweg et al., 2004; Luo et al., 2008). Even though little direct
information is as yet available concermng the blosynth651s of di- and tri-caffeoylquinic
acid, the prior accumulation of CGA as precursor does appear to be necessary.
Biosynthesis of CGA might occur from: (a) p-coumaroyl-quinate, synthetized by HCT
(hydroxycinnamoyl-CoA: shikimate/quinate hydroxycinnamoyltransferase) or HQT
(hydroxycinnamoyl-CoA: quinate HCT), and subsequently hydroxylated by p-coumarate-

* andrea.moglia@unito.it

Proc. 8" IS on Artichoke, Cardoon and Their Wild Relatives 401
Ed.: M.A. Pagnotta
Acta Hort. 983, ISHS 2013


https://core.ac.uk/display/29219406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3’-hydroxylase (C3'H); (b) caffeoyl-CoA and quinic acid by means of HQT (Comino et
al., 2007, 2009; Moglia et al., 2009; Menin et al., 2010).

The main objective of our research was to shed light on the pathway leading to the
synthesis of CQAs in globe artichoke and factors affecting their content and
accumulation. The acquired knowledge will make possible to identify suitable strategies
for optimizing the production of CQAs in globe artichoke.

MATERIALS AND METHODS

Gene Isolation

Isolation of partial gene sequence of HCT, HQT and C3’H was performed by
using degenerate primers and full length isolation carried out through RACE-PCR.
Acyltransf 1 and Acyltransf 2 were identified among a set of 19,055 unigene set, using
DFGWG motif as a search string to identify putative BAHD acyltransferase.

In Vitro and In Vivo Functional Characterization

The isolated genes were first inserted in expression vectors for bacteria (pET3a-
pET28) and for yeast (pYEDP60) and then expressed in heterologous host (Escherichia
coli and Saccaromyces cerevisiae). Crude enzyme extracts containing recombinant
proteins were tested for their enzymatic activity.

UV-C Exposure and Gene Expression Study

Three globe artichoke foliar discs were exposed to UV-C treatment (16 W
germicidal lamp, 20 min) as described elsewhere (Moglia et al., 2008). The relative
expression of candidate genes in response to UV-C exposure of globe artichoke leaves
was measured by RT-qPCR, using actin to normalize the expression levels.

Gene Mapping

Sequences of target genes in parental genotypes ‘Romanesco C3’ and ‘Spinoso di
Palermo’ used for map development (Portis et al., 2009), resulted in the identification of
SNPs. Genotyping of SNPs was carried out through tetra primers ARMS-PCR.

RESULTS AND DISCUSSION

Gene Isolation and Characterization

We isolated and characterized key genes involved in the synthesis of CGA, four
BAHD acyltransferases (HCT, HQT, Acyltransf 1, Acyltransf 2) and one P450
hydroxylase (C3’H). All the enzymes were tested for their enzymatic activity through
HPLC and LC-MS analyses.

All the BAHD enzymes proved ability to use either p-coumaroyl-CoA or caffeoyl-
CoA as an acyl donor and quinic acid as an acceptor, to generate, respectively,
chlorogenic acid and p-coumaroyl quinate (Comino et al., 2007, 2009; Menin et al.,
2010). In Figure 1 the chromatogram shows the enzymatic conversion of p-coumaroyl-
CoA (peak 1) into p-coumaroyl quinate (peak 2) performed by recombinant Acyltransf 2.
In the presence of p-coumaroylshikimate, the recombinant C3’H protein synthesized a
compound identified as caffeoylshikimate. On the contrary a lower conversion of
p-coumaroylquinate to caffeoylquinate was detected (Moglia et al., 2009).

Effect of Abiotic Stress on Caffeoylquinic Acid Accumulation

Secondary metabolites are involved in the plant response to environmental
stresses, whether biotic or abiotic. Leaf CQA content, as for most phenylpropanoid
compounds, is influenced by abiotic stress treatment, and exposure to UV-C radiation led
to large increase of di-CQAs present in leaf disks of globe artichoke accessions (Moglia
et al., 2008).

The gene activation in response to UV-C stress was evaluated by means of
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RT-PCR. This stress affected differentially the previously isolated genes (Fig. 2). The
highest increase in gene expression level was observed for HCT, that showed an enhance
in transcription of 12.3-fold. The increase of gene expression upon UV-radiation not only
indicates a gene induction in response to UV-stress but also an involvement of the
enzymes in caffeoylquinic acid synthesis.

Genetic Mapping

The development of DNA-based markers made possible their positioning in the
C. cardunculus genetic maps we have previously developed (Portis et al., 2009, 2012),
which were obtained by crossing a globe artichoke ‘Romanesco C3’ (female parent) and a
cultivated cardoon ‘Altilis 41° genotype (Progeny 2). At present the entire biosynthetic
pathway leading to the production of chlorogenic is thus genetically mapped (Fig. 3). The
integration of these gene-based markers has also improved the precision of marker order
and reduced inter-marker distances in some LGs.

CONCLUSION

We identified, characterized and mapped all the key enzymes involved in CGA
biosynthesis.

Future research activities will be focused on (i) the analysis of the in vivo role of
the acyltransferases by means of forward genetic approaches (e.g., gene silencing); and
(i1) the identification of QTLs associated with the production of phenolic compounds.
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Fig. 1. Heterologous expression in E. coli and in vitro enzymatic assays: an aliquot of the
incubation reaction without (CTR) or with (Acyltransf 2) recombinant enzyme was
analysed. 1: p-coumaroyl-CoA; 2 p-coumaroylquinate.
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Fig. 2. RT-PCR derived patterns of expression of HCT, HQT, C3’H, Acyltransf 1 and
Acyltransf 2 in response to UV-C radiation.
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Fig. 3. Consensus linkage groups showing the location of the genes belonging to CQAs
pathway. Consensus LGs of ‘Romanesco C3’ (female parent, white LGs on the
left) and ‘Altilis 41° (male parent, gray LGs on the right), incorporating the CQA
biosynthesis pathway genes marked by gray boxes (taken from Menin et al., 2010).
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