15 research outputs found

    Invasive perennial forb effects on gross soil nitrogen cycling and nitrous oxide fluxes depend on phenology.

    Get PDF
    Invasive plants can increase soil nitrogen (N) pools and accelerate soil N cycling rates, but their effect on gross N cycling and nitrous oxide (N2 O) emissions has rarely been studied. We hypothesized that perennial pepperweed (Lepidium latifolium) invasion would increase rates of N cycling and gaseous N loss, thereby depleting ecosystem N and causing a negative feedback on invasion. We measured a suite of gross N cycling rates and net N2 O fluxes in invaded and uninvaded areas of an annual grassland in the Sacramento-San Joaquin River Delta region of northern California. During the growing season, pepperweed-invaded soils had lower microbial biomass N, gross N mineralization, dissimilatory nitrate reduction to ammonium (DNRA), and denitrification-derived net N2 O fluxes (P < 0.02 for all). During pepperweed dormancy, gross N mineralization, DNRA, and denitrification-derived net N2 O fluxes were stimulated in pepperweed-invaded plots, presumably by N-rich litter inputs and decreased competition between microbes and plants for N (P < 0.04 for all). Soil organic carbon and total N concentrations, which reflect pepperweed effects integrated over longer time scales, were lower in pepperweed-invaded soils (P < 0.001 and P = 0.04, respectively). Overall, pepperweed invasion had a net negative effect on ecosystem N status, depleting soil total N to potentially cause a negative feedback to invasion in the long term

    The North American tree-ring fire-scar network

    Get PDF
    Fire regimes in North American forests are diverse and modern fire records are often too short to capture important patterns, trends, feedbacks, and drivers of variability. Tree-ring fire scars provide valuable perspectives on fire regimes, including centuries-long records of fire year, season, frequency, severity, and size. Here, we introduce the newly compiled North American tree-ring fire-scar network (NAFSN), which contains 2562 sites, >37,000 fire-scarred trees, and covers large parts of North America. We investigate the NAFSN in terms of geography, sample depth, vegetation, topography, climate, and human land use. Fire scars are found in most ecoregions, from boreal forests in northern Alaska and Canada to subtropical forests in southern Florida and Mexico. The network includes 91 tree species, but is dominated by gymnosperms in the genus Pinus. Fire scars are found from sea level to >4000-m elevation and across a range of topographic settings that vary by ecoregion. Multiple regions are densely sampled (e.g., >1000 fire-scarred trees), enabling new spatial analyses such as reconstructions of area burned. To demonstrate the potential of the network, we compared the climate space of the NAFSN to those of modern fires and forests; the NAFSN spans a climate space largely representative of the forested areas in North America, with notable gaps in warmer tropical climates. Modern fires are burning in similar climate spaces as historical fires, but disproportionately in warmer regions compared to the historical record, possibly related to under-sampling of warm subtropical forests or supporting observations of changing fire regimes. The historical influence of Indigenous and non-Indigenous human land use on fire regimes varies in space and time. A 20th century fire deficit associated with human activities is evident in many regions, yet fire regimes characterized by frequent surface fires are still active in some areas (e.g., Mexico and the southeastern United States). These analyses provide a foundation and framework for future studies using the hundreds of thousands of annually- to sub-annually-resolved tree-ring records of fire spanning centuries, which will further advance our understanding of the interactions among fire, climate, topography, vegetation, and humans across North America

    Indexing Permafrost Soil Organic Matter Degradation Using High-Resolution Mass Spectrometry

    No full text
    <div><p>Microbial degradation of soil organic matter (SOM) is a key process for terrestrial carbon cycling, although the molecular details of these transformations remain unclear. This study reports the application of ultrahigh resolution mass spectrometry to profile the molecular composition of SOM and its degradation during a simulated warming experiment. A soil sample, collected near Barrow, Alaska, USA, was subjected to a 40-day incubation under anoxic conditions and analyzed before and after the incubation to determine changes of SOM composition. A CHO index based on molecular C, H, and O data was utilized to codify SOM components according to their observed degradation potentials. Compounds with a CHO index score between –1 and 0 in a water-soluble fraction (WSF) demonstrated high degradation potential, with a highest shift of CHO index occurred in the N-containing group of compounds, while similar stoichiometries in a base-soluble fraction (BSF) did not. Additionally, compared with the classical H:C vs O:C van Krevelen diagram, CHO index allowed for direct visualization of the distribution of heteroatoms such as N in the identified SOM compounds. We demonstrate that CHO index is useful not only in characterizing arctic SOM at the molecular level but also enabling quantitative description of SOM degradation, thereby facilitating incorporation of the high resolution MS datasets to future mechanistic models of SOM degradation and prediction of greenhouse gas emissions.</p></div

    Heatmaps for CHO index as a function of molecular mass of extracted SOM compounds before and after the soil warming experiment.

    No full text
    <p>The color bar represents the relative abundance of compounds identified in each of the SOM extract: <b>(a)</b> WSF0, <b>(b)</b> WSF40, <b>(c)</b> BSF0, and <b>(d)</b> BSF40. A positive correlation between CHO index and mass can be observed for mass > 600 Da.</p

    Molecular distribution of extracted SOM compounds from a 40-day soil warming incubation experiment.

    No full text
    <p>(a) Box-and-whisker plots of the mass distribution of SOM compounds, including the base-soluble fraction (BSF) at day 0 (BSF0) and day 40 (BSF40) and the water-soluble fraction (WSF) at day 0 (WSF0) and day 40 (WSF40). <b>(b and c)</b> van Krevelen diagram along with CHO index showing the molecular distribution of WSF SOM compounds before (b) and after (c) incubation. <b>(d)</b> Percentages of molecular formulae identified with CHO index values between -2 and 2 before and after soil incubation and are normalized to the total number of formulae displayed in (b) and (c). Compound classes are labeled above colored bars as follows: (A) lipids, (B) unsaturated hydrocarbons, (C) peptides, (D) aminosugars, (E) carbohydrates, (F) lignin, (G) condensed hydrocarbons, (H) tannins.</p
    corecore