440 research outputs found
The Removal of Flourides from Water by Ionic Exchange
Mottled enamel is the term originated by McKay to describe the disfigurement of teeth which Smith and others discovered was caused by the presence of fluorides in drinking water. Since then considerable time, energy and money have been spent in an effort to find an economical method of removing fluorides from drinking water. At first the use of activated carbon and activated alumina were rather promising; but more recently the use of tricalcium phosphate to remove fluorides from water has been developed (2). A patent by Adams and Holmes (1), wherein it was claimed that the sulphate ion concentration could be reduced nearly to zero, suggested that the fluoride content of water might be reduced to a permissible value by anionic exchange. Such a method of fluoride removal was investigated as a part of the research program concerning water treatment which has been in progress for many years at Iowa State College
Secondary fast magnetoacoustic waves trapped in randomly structured plasmas
Fast magnetoacoustic wave is an important tool for inferring solar atmospheric parameters. We numerically simulate the propagation of fast wave pulses in randomly structured plasmas mimicking the highly inhomogeneous solar corona. A network of secondary waves is formed by a series of partial reflections and transmissions. These secondary waves exhibit quasi-periodicities in both time and space. Since the temporal and spatial periods are related simply through the fast wave speed, we quantify the properties of secondary waves by examining the dependence of the average temporal period () on the initial pulse width () as well as the density contrast () and correlation length () that characterize the randomness of the equilibrium density profiles. For small-amplitude pulses, does not alter significantly. Large-amplitude pulses, on the other hand, enhance the density contrast when is small but have a smoothing effect when is sufficiently large. We found that scales linearly with and that the scaling factor is larger for a narrower pulse. However, in terms of the absolute values of , broader pulses generate secondary waves with longer periods, and this effect is stronger in random plasmas with shorter correlation lengths. Secondary waves carry the signatures of both the leading wave pulse and background plasma, our study may find applications in MHD seismology by exploiting the secondary waves detected in the dimming regions after CMEs or EUV waves
Euclid preparation. XXVIII. Forecasts for ten different higher-order weak lensing statistics
Recent cosmic shear studies have shown that higher-order statistics (HOS) developed by independent teams now outperform standard two-point estimators in terms of statistical precision thanks to their sensitivity to the non-Gaussian features of large-scale structure. The aim of the Higher-Order Weak Lensing Statistics (HOWLS) project is to assess, compare, and combine the constraining power of ten different HOS on a common set of Euclid-like mocks, derived from N-body simulations. In this first paper of the HOWLS series, we computed the nontomographic (Ω, Ï) Fisher information for the one-point probability distribution function, peak counts, Minkowski functionals, Betti numbers, persistent homology Betti numbers and heatmap, and scattering transform coefficients, and we compare them to the shear and convergence two-point correlation functions in the absence of any systematic bias. We also include forecasts for three implementations of higher-order moments, but these cannot be robustly interpreted as the Gaussian likelihood assumption breaks down for these statistics. Taken individually, we find that each HOS outperforms the two-point statistics by a factor of around two in the precision of the forecasts with some variations across statistics and cosmological parameters. When combining all the HOS, this increases to a 4.5 times improvement, highlighting the immense potential of HOS for cosmic shear cosmological analyses with Euclid. The data used in this analysis are publicly released with the paper
Euclid Preparation. XXVIII. Forecasts for ten different higher-order weak lensing statistics
Recent cosmic shear studies have shown that higher-order statistics (HOS) developed by independent teams now outperform standard two-point estimators in terms of statistical precision thanks to their sensitivity to the non-Gaussian features of large-scale structure. The aim of the Higher-Order Weak Lensing Statistics (HOWLS) project is to assess, compare, and combine the constraining power of ten different HOS on a common set of -like mocks, derived from N-body simulations. In this first paper of the HOWLS series, we computed the nontomographic (, ) Fisher information for the one-point probability distribution function, peak counts, Minkowski functionals, Betti numbers, persistent homology Betti numbers and heatmap, and scattering transform coefficients, and we compare them to the shear and convergence two-point correlation functions in the absence of any systematic bias. We also include forecasts for three implementations of higher-order moments, but these cannot be robustly interpreted as the Gaussian likelihood assumption breaks down for these statistics. Taken individually, we find that each HOS outperforms the two-point statistics by a factor of around two in the precision of the forecasts with some variations across statistics and cosmological parameters. When combining all the HOS, this increases to a times improvement, highlighting the immense potential of HOS for cosmic shear cosmological analyses with . The data used in this analysis are publicly released with the paper
First M87 Event Horizon Telescope Results and the Role of ALMA
In April 2019, the Event Horizon Telescope (EHT) collaboration revealed the
first image of the candidate super-massive black hole (SMBH) at the centre of
the giant elliptical galaxy Messier 87 (M87). This event-horizon-scale image
shows a ring of glowing plasma with a dark patch at the centre, which is
interpreted as the shadow of the black hole. This breakthrough result, which
represents a powerful confirmation of Einstein's theory of gravity, or general
relativity, was made possible by assembling a global network of radio
telescopes operating at millimetre wavelengths that for the first time included
the Atacama Large Millimeter/ submillimeter Array (ALMA). The addition of ALMA
as an anchor station has enabled a giant leap forward by increasing the
sensitivity limits of the EHT by an order of magnitude, effectively turning it
into an imaging array. The published image demonstrates that it is now possible
to directly study the event horizon shadows of SMBHs via electromagnetic
radiation, thereby transforming this elusive frontier from a mathematical
concept into an astrophysical reality. The expansion of the array over the next
few years will include new stations on different continents - and eventually
satellites in space. This will provide progressively sharper and
higher-fidelity images of SMBH candidates, and potentially even movies of the
hot plasma orbiting around SMBHs. These improvements will shed light on the
processes of black hole accretion and jet formation on event-horizon scales,
thereby enabling more precise tests of general relativity in the truly strong
field regime.Comment: 11 pages + cover page, 6 figure
Measurement of hadronic shower punchthrough in magnetic field
The total punchthrough probability of showers produced by negative pions, positive pions, positive kaons and protons, has been measured as a function of depth in an absorber in a magnetic field ranging from 0 to 3 Tesla. The incident particle momentum varied from 10 to 300 GeV/c. The lateral shower development and particle multiplicity at several absorber depths have been determined. The measurements are compared with the predictions of Monte Carlo simulation programs
First M87 Event Horizon Telescope Results. VII. Polarization of the Ring
In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This structure originates from synchrotron emission produced by relativistic plasma located in the immediate vicinity of the black hole. Here we present the corresponding linear-polarimetric EHT images of the center of M87. We find that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of similar to 15%. The polarization position angles are arranged in a nearly azimuthal pattern. We perform quantitative measurements of relevant polarimetric properties of the compact emission and find evidence for the temporal evolution of the polarized source structure over one week of EHT observations. The details of the polarimetric data reduction and calibration methodology are provided. We carry out the data analysis using multiple independent imaging and modeling techniques, each of which is validated against a suite of synthetic data sets. The gross polarimetric structure and its apparent evolution with time are insensitive to the method used to reconstruct the image. These polarimetric images carry information about the structure of the magnetic fields responsible for the synchrotron emission. Their physical interpretation is discussed in an accompanying publication
First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring
The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring radius and ring asymmetry depend on black hole mass and spin, respectively, and both are therefore expected to be stable when observed in future EHT campaigns. Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity. If the black hole spin and M87's large scale jet are aligned, then the black hole spin vector is pointed away from Earth. Models in our library of non-spinning black holes are inconsistent with the observations as they do not produce sufficiently powerful jets. At the same time, in those models that produce a sufficiently powerful jet, the latter is powered by extraction of black hole spin energy through mechanisms akin to the Blandford-Znajek process. We briefly consider alternatives to a black hole for the central compact object. Analysis of existing EHT polarization data and data taken simultaneously at other wavelengths will soon enable new tests of the GRMHD models, as will future EHT campaigns at 230 and 345 GHz
- âŠ