56 research outputs found

    On the Diversity of Friendship and Network Ties: A Comparison of Religious Versus Nonreligious Group Membership in the Rural American South

    Get PDF
    Social science has long been interested in the effects and predictors of community participation, especially regarding voluntary membership or civic participation. Likewise, the role of social institutions has been given much attention in understanding their possible effect as an outlet for both individual desires to become civically engaged as well the institution’s ability to shelter an individual and surround them with others like themselves. We use data from the 2000 Social Capital Benchmark Survey to examine the effect of group membership on the overall diversity of friendships. The diversity of friendships gives us a good proxy to the degree of the closure created by existing in-group dynamics. Furthermore, the effect of membership is comparatively examined between religious group membership and the degree of nonreligious group membership. Our findings indicate differing effects based on the type of membership on the diversity of friendships at the individual level

    Fossilisation processes and our reading of animal antiquity

    Get PDF
    Estimates for animal antiquity exhibit a significant disconnect between those from molecular clocks, which indicate crown animals evolved ∼800 million years ago (Ma), and those from the fossil record, which extends only ∼574 Ma. Taphonomy is often held culpable: early animals were too small/soft/fragile to fossilise, or the circumstances that preserve them were uncommon in the early Neoproterozoic. We assess this idea by comparing Neoproterozoic fossilisation processes with those of the Cambrian and its abundant animal fossils. Cambrian Burgess Shale-type (BST) preservation captures animals in mudstones showing a narrow range of mineralogies; yet, fossiliferous Neoproterozoic mudstones rarely share the same mineralogy. Animal fossils are absent where BST preservation occurs in deposits ≥789 Ma, suggesting a soft maximum constraint on animal antiquity

    Evaluating the End-User Experience of Private Browsing Mode

    Get PDF
    Nowadays, all major web browsers have a private browsing mode. However, the mode's benefits and limitations are not particularly understood. Through the use of survey studies, prior work has found that most users are either unaware of private browsing or do not use it. Further, those who do use private browsing generally have misconceptions about what protection it provides. However, prior work has not investigated \emph{why} users misunderstand the benefits and limitations of private browsing. In this work, we do so by designing and conducting a three-part study: (1) an analytical approach combining cognitive walkthrough and heuristic evaluation to inspect the user interface of private mode in different browsers; (2) a qualitative, interview-based study to explore users' mental models of private browsing and its security goals; (3) a participatory design study to investigate why existing browser disclosures, the in-browser explanations of private browsing mode, do not communicate the security goals of private browsing to users. Participants critiqued the browser disclosures of three web browsers: Brave, Firefox, and Google Chrome, and then designed new ones. We find that the user interface of private mode in different web browsers violates several well-established design guidelines and heuristics. Further, most participants had incorrect mental models of private browsing, influencing their understanding and usage of private mode. Additionally, we find that existing browser disclosures are not only vague, but also misleading. None of the three studied browser disclosures communicates or explains the primary security goal of private browsing. Drawing from the results of our user study, we extract a set of design recommendations that we encourage browser designers to validate, in order to design more effective and informative browser disclosures related to private mode

    Chromium evidence for protracted oxygenation during the Paleoproterozoic

    Get PDF
    Accepted manuscript version, licensed CC BY-NC-ND 4.0. It has commonly been proposed that the development of complex life is tied to increases in atmospheric oxygenation. However, there is a conspicuous gap in time between the oxygenation of the atmosphere 2.4 billion years ago (Ga) and the first widely-accepted fossil evidence for complex eukaryotic cells . At present the gap could either represent poor sampling, poor preservation, and/or difficulties in recognizing early eukaryote fossils, or it could be real and the evolution of complex cells was delayed due to relatively low and/or variable O2 levels in the Paleoproterozoic. To assess the extent and stability of Paleoproterozoic O2 levels, we measured chromium-based oxygen proxies in a core from the Onega Basin (NW-Russia), deposited billion years ago—a few hundred million years prior to the oldest definitive fossil evidence for eukaryotes. Fractionated chromium isotopes are documented throughout the section (max. ‰ ), suggesting a long interval (possibly >100 million years) during which oxygen levels were higher and more stable than in the billion years before or after. This suggests that, if it is the case that complex cells did not evolve until after 1.7 Ga, then this delay was not due to O2-limitation. Instead, it could reflect other limiting factors—ecological or environmental—or could indicate that it simply takes a long time—more than the tens to >100 million years recorded in Onega Basin sediments—for such biological innovations to evolve
    corecore