646 research outputs found
Rapid, Specific Determination of Iodine and Iodide by Combined Solid-Phase Extraction/Diffuse Reflectance Spectroscopy
A new, rapid methodology for trace analysis using solid-phase extraction is described. The two-step methodology is based on the concentration of an analyte onto a membrane disk and on the determination by diffuse reflectance spectroscopy of the amount of analyte extracted on the disk surface. This method, which is adaptable to a wide range of analytes, has been used for monitoring ppm levels of iodine and iodide in spacecraft water. Iodine is used as a biocide in spacecraft water. For these determinations, a water sample is passed through a membrane disk by means of a 10-mL syringe that is attached to a disk holder assembly. The disk, which is a polystyrene−divinylbenzene composite, is impregnated with poly(vinylpyrrolidone) (PVP), which exhaustively concentrates iodine as a yellow iodine−PVP complex. The amount of concentrated iodine is then determined in only 2 s by using a hand-held diffuse reflectance spectrometer by comparing the result with a calibration curve based on the Kubelka−Munk function. The same general procedure can be used to determine iodide levels after its facile and exhaustive oxidation to iodine by peroxymonosulfate (i.e., Oxone reagent). For samples containing both analytes, a two-step procedure can be used in which the iodide concentration is calculated from the difference in iodine levels before and after treatment of the sample with peroxymonosulfate. With this methodology, iodine and iodide levels in the 0.1−5.0 ppm range can be determined with a total workup time of ∼60 s with a RSD of ∼6%
Rapid, Low Level Determination of Silver(I) in Drinking Water by Colorimetric–solid-phase Extraction
A rapid, highly sensitive two-step procedure for the trace analysis of silver(I) is described. The method is based on: (1) the solid-phase extraction (SPE) of silver(I) from a water sample onto a disk impregnated with a silver-selective colorimetric reagent, and (2) the determination of the amount of complexed analyte extracted by the disk by diffuse reflectance spectroscopy (DRS). This method, called colorimetric–solid-phase extraction (C–SPE), was recently shown effective in determining low concentrations (0.1–5.0 mg/ml) of iodine and iodide in drinking water. This report extends C–SPE to the trace (∼4 μg/l) level monitoring of silver(I) which is a biocide used on the International Space Station (ISS). The determination relies on the manually driven passage of a water sample through a polystyrene–divinylbenzene disk that has been impregnated with the colorimetric reagent 5-(p-dimethylaminobenzylidene) rhodanine (DMABR) and with an additive such as a semi-volatile alcohol (1,2-decanediol) or nonionic surfactant (Brij 30). The amount of concentrated silver(I) is then determined in a few seconds by using a hand-held diffuse reflectance spectrometer, with a total sample workup and readout time of ∼60 s. Importantly, the additive induces the uptake of water by the disk, which creates a local environment conducive to silver(I) complexation at an extremely high concentration factor (∼800). There is no detectable reaction between silver(I) and impregnated DMABR in the absence of the additive. This strategy represents an intriguing new dimension for C–SPE in which additives, directly loaded in the disk material, provide a means to manipulate the reactivity of the impregnated reagent
Electrochemical method of controlling thiolate coverage on a conductive substrate such as gold
An electrochemical method for forming a partial monomolecular layer of a predetermined extent of coverage of a thiolate of the formula, XRS--, therein R can be a linear or branched chain hydrocarbon or an aromatic or the like and X can be any compatible end group, e.g., OH, COOH, CH.sub.3 or the like, upon a substrate such as gold, which involves applying in an electrochemical system a constant voltage preselected to yield the desired predetermined extent of coverage
Multiplexed Colorimetric Solid-Phase Extraction
Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II)
Reconstructing dynamical networks via feature ranking
Empirical data on real complex systems are becoming increasingly available.
Parallel to this is the need for new methods of reconstructing (inferring) the
topology of networks from time-resolved observations of their node-dynamics.
The methods based on physical insights often rely on strong assumptions about
the properties and dynamics of the scrutinized network. Here, we use the
insights from machine learning to design a new method of network reconstruction
that essentially makes no such assumptions. Specifically, we interpret the
available trajectories (data) as features, and use two independent feature
ranking approaches -- Random forest and RReliefF -- to rank the importance of
each node for predicting the value of each other node, which yields the
reconstructed adjacency matrix. We show that our method is fairly robust to
coupling strength, system size, trajectory length and noise. We also find that
the reconstruction quality strongly depends on the dynamical regime
Novel approaches to the construction of miniaturized analytical instrumentation
This paper focuses on the design, construction, preliminary testing, and potential applications of three forms of miniaturized analytical instrumentation. The first is an optical fiber instrument for monitoring pH and other cations in aqueous solutions. The instrument couples chemically selective indicators that were immobilized at porous polymeric films with a hardware package that provides the excitation light source, required optical components, and detection and data processing hardware. The second is a new form of a piezoelectric mass sensor. The sensor was fabricated by the deposition of a thin (5.5 micron) film of piezoelectric aluminum nitride (AIN). The completed deposition process yields a thin film resonator (TFR) that is shaped as a 400 micron square and supports a standing bulk acoustic wave in a longitudinal mode at frequencies of approx. 1 GHz. Various deposition and vapor sorption studies indicate that the mass sensitivity of the TFR's rival those of the most sensitive mass sensors currently available, though offering such performance in a markedly smaller device. The third couples a novel form of liquid chromatography with microlithographic miniaturization techniques. The status of the miniaturization effort, the goal of which is to achieve chip-scale separations, is briefly discussed
Application of Colorimetric Solid Phase Extraction (C-SPE) to Monitoring Nickel(II) and Lead(II) in Spacecraft Water Supplies
Archived water samples collected on the International Space Station (ISS) and returned to Earth for analysis have, in a few instances, contained trace levels of heavy metals. Building on our previous advances using Colorimetric Solid Phase Extraction (C-SPE) as a biocide monitoring technique, we are devising methods for the low level monitoring of nickel(II), lead(II) and other heavy metals. C-SPE is a sorption-spectrophotometric platform based on the extraction of analytes onto a membrane impregnated with a colorimetric reagent that are then quantified on the surface of the membrane using a diffuse reflectance spectrophotometer. Along these lines, we have determined nickel(II) via complexation with dimethylglyoxime (DMG) and begun to examine the analysis of lead(II) by its reaction with 2,5- dimercapto-1,3,4-thiadiazole (DMTD) and 4-(2- pyridylazo)-resorcinol (PAR). These developments are also extending a new variant of C-SPE in which immobilized reagents are being incorporated into this methodology in order to optimize sample reaction conditions and to introduce the colorimetric reagent. This paper describes the status of our development of these two new methods
Recommended from our members
UK landscape ecology: trends and perspectives from the first 25 years of ialeUK
Context
The 25th anniversary of the founding of the UK chapter of the International Association for Landscape Ecology (ialeUK) was marked in 2017.
Objectives
To assess trends in UK landscape ecology research over ialeUK’s first 25 years, to compare these trends to changes elsewhere in the world, and to consider how ialeUK can continue to support landscape ecology research and practice.
Methods
A database of conference abstracts was compiled and examined in combination with a questionnaire that surveyed existing and former active members of ialeUK.
Results
Across 1992–2017 we observe noticeable trends including the declining roles of statutory bodies, the development of the ecosystem services concept, and a decrease in use of empirical methods. Analysis of questionnaire results highlighted four key areas: Developing new researchers; Facilitating conferences for networking, learning and discussion; Linking policy with practice; and Driving the continued growth of landscape ecology as a discipline. Challenges were also noted, especially regarding the adoption of a wider understanding of landscape ecological principles in management.
Conclusions
Increases in qualitative research, decreases in studies explicitly examining connectivity/fragmentation and an absence of landscape genetics studies in the UK are seemingly distinct from US landscape ecology and elsewhere around the world, based on published accounts. ialeUK has had success in increasing the role of landscape ecology in policy and practice, but needs to continue to aim for improved collaboration with other landscape-related professional bodies and contributions to wider sustainability agendas
In-Flight Water Quality Monitoring on the International Space Station (ISS): Measuring Biocide Concentrations with Colorimetric Solid Phase Extraction (CSPE)
The colorimetric water quality monitoring kit (CWQMK) was delivered to the International Space Station (ISS) on STS-128/17A and was initially deployed in September 2009. The kit was flown as a station development test objective (SDTO) experiment to evaluate the acceptability of colorimetric solid phase extraction (CSPE) technology for routine water quality monitoring on the ISS. During the SDTO experiment, water samples from the U.S. water processor assembly (WPA), the U.S. potable water dispenser (PWD), and the Russian system for dispensing ground-supplied water (SVO-ZV) were collected and analyzed with the CWQMK. Samples from the U.S. segment of the ISS were analyzed for molecular iodine, which is the biocide added to water in the WPA. Samples from the SVOZV system were analyzed for ionic silver, the biocide used on the Russian segment of the ISS. In all, thirteen in-flight analysis sessions were completed as part of the SDTO experiment. This paper provides an overview of the experiment and reports the results obtained with the CWQMK. The forward plan for certifying the CWQMK as operational hardware and expanding the capabilities of the kit are also discussed
- …
