26,633 research outputs found
Revisiting He-like X-ray Emission Line Plasma Diagnostics
A complete model of helium-like line and continuum emission has been
incorporated into the plasma simulation code Cloudy. All elements between He
and Zn are treated, any number of levels can be considered, and radiative and
collisional processes are included. This includes photoionization from all
levels, line transfer including continuum pumping and destruction by background
opacities, scattering, and collisional processes. The model is calculated
self-consistently along with the ionization and thermal structure of the
surrounding nebula. The result is a complete line and continuum spectrum of the
plasma. Here we focus on the ions of the He I sequence and reconsider the
standard helium-like X-ray diagnostics. We first consider semi-analytical
predictions and compare these with previous work in the low-density,
optically-thin limit. We then perform numerical calculations of helium-like
X-ray emission (such as is observed in some regions of Seyferts) and predict
line ratios as a function of ionizing flux, hydrogen density, and column
density. In particular, we demonstrate that, in photoionized plasmas, the
-ratio, a density indicator in a collisional plasma, depends on the
ionization fraction and is strongly affected by optical depth for large column
densities. We also introduce the notion that the -ratio is a measure of the
incident continuum at UV wavelengths. The -ratio, which is
temperature-sensitive in a collisional plasma, is also discussed, and shown to
be strongly affected by continuum pumping and optical depth as well. These
distinguish a photoionized plasma from the more commonly studied collisional
case.Comment: 28 pages, 7 figures, accepted to Ap
Sheffield University CLEF 2000 submission - bilingual track: German to English
We investigated dictionary based cross language information
retrieval using lexical triangulation. Lexical triangulation combines the results
of different transitive translations. Transitive translation uses a pivot language
to translate between two languages when no direct translation resource is
available. We took German queries and translated then via Spanish, or Dutch
into English. We compared the results of retrieval experiments using these
queries, with other versions created by combining the transitive translations or
created by direct translation. Direct dictionary translation of a query introduces
considerable ambiguity that damages retrieval, an average precision 79% below
monolingual in this research. Transitive translation introduces more ambiguity,
giving results worse than 88% below direct translation. We have shown that
lexical triangulation between two transitive translations can eliminate much of
the additional ambiguity introduced by transitive translation
Improved He I Emissivities in the Case B Approximation
We update our prior work on the case B collisional-recombination spectrum of
He I to incorporate \textit{ab initio} photoionisation cross-sections. This
large set of accurate, self-consistent cross-sections represents a significant
improvement in He I emissivity calculations because it largely obviates the
piecemeal nature that has marked all modern works. A second, more recent set of
\textit{ab initio} cross-sections is also available, but we show that those are
less consistent with bound-bound transition probabilities than our adopted set.
We compare our new effective recombination coefficients with our prior work and
our new emissivities with those by other researchers, and we conclude with
brief remarks on the effects of the present work on the He I error budget. Our
calculations cover temperatures K and densities cm. Full results are available online.Comment: Accepted to MNRAS Letters; 4 pages, 4 figures, 2 tables, 1
supplemental fil
Monomial integrals on the classical groups
This paper presents a powerfull method to integrate general monomials on the
classical groups with respect to their invariant (Haar) measure. The method has
first been applied to the orthogonal group in [J. Math. Phys. 43, 3342 (2002)],
and is here used to obtain similar integration formulas for the unitary and the
unitary symplectic group. The integration formulas turn out to be of similar
form. They are all recursive, where the recursion parameter is the number of
column (row) vectors from which the elements in the monomial are taken. This is
an important difference to other integration methods. The integration formulas
are easily implemented in a computer algebra environment, which allows to
obtain analytical expressions very efficiently. Those expressions contain the
matrix dimension as a free parameter.Comment: 16 page
Lighting as a Circadian Rhythm-Entraining and Alertness-Enhancing Stimulus in the Submarine Environment
The human brain can only accommodate a circadian rhythm that closely follows 24 hours. Thus, for a work schedule to meet the brain’s hard-wired requirement, it must employ a 24 hour-based program. However, the 6 hours on, 12 hours off (6/12) submarine watchstanding schedule creates an 18-hour “day” that Submariners must follow. Clearly, the 6/12 schedule categorically fails to meet the brain’s operational design, and no schedule other than one tuned to the brain’s 24 hour rhythm can optimize performance. Providing Submariners with a 24 hour-based watchstanding schedule—combined with effective circadian entrainment techniques using carefully-timed exposure to light—would allow crewmembers to work at the peak of their daily performance cycle and acquire more restorative sleep. In the submarine environment, where access to natural light is absent, electric lighting can play an important role in actively entraining—and closely maintaining—circadian regulation. Another area that is likely to have particular importance in the submarine environment is the potential effect of light to help restore or maintain alertness
Ultrasonic Backscatter Rotation Scanner for Detection of Ply Bends and Fiber Wrinkles
Fiber wrinkles and ply bends in structures composed of laminated, fiber reinforced plastic materials are known to degrade performance under design load conditions. Such flaws can inadvertently be manufactured into structures, such as solid rocket motor (srm) cases and nozzles, and generally are difficult to detect. For structures such as nozzles, plies are not coplanar with the nozzle wall, but have an out-of-plane direction. Such materials offer an increased challenge for detection of ply bends and fiber wrinkles. Advanced nondestructive evaluation (NDE) methods are needed for detection of these flaws so that manufacturing processes can be characterized and improved and, also, to prevent the usage of defective materials. Ultrasonic backscatter-based methods have been demonstrated to be sensitive to fiber direction and to transverse cracks in composite laminate plates and test panels with plies lying in the plane of the plate or panel [1–5]. Backscatter methods, thus, provide a viable foundation for addressing the similar problem of ply bends and fiber wrinkles in composites with out-of-plane plies. This paper describes an improved ultrasonic backscatter method for detection of ply distortions in structures with out-of-plane ply orientations
Concept design and alternate arrangements of orbiter mid-deck habitability features
The evaluations and recommendations for habitability features in the space shuttle orbiter mid-deck are summarized. The orbiter mission plans, the mid-deck dimensions and baseline arrangements along with crew compliments and typical activities were defined. Female and male anthropometric data based on zero-g operations were also defined. Evaluations of baseline and alternate feasible concepts provided several recommendations which are discussed
A Theory of Errors in Quantum Measurement
It is common to model random errors in a classical measurement by the normal
(Gaussian) distribution, because of the central limit theorem. In the quantum
theory, the analogous hypothesis is that the matrix elements of the error in an
observable are distributed normally. We obtain the probability distribution
this implies for the outcome of a measurement, exactly for the case of 2x2
matrices and in the steepest descent approximation in general. Due to the
phenomenon of `level repulsion', the probability distributions obtained are
quite different from the Gaussian.Comment: Based on talk at "Spacetime and Fundamental Interactions: Quantum
Aspects" A conference to honor A. P. Balachandran's 65th Birthda
- …