342 research outputs found
Black hole mergers in the universe
Mergers of black-hole binaries are expected to release large amounts of
energy in the form of gravitational radiation. However, binary evolution models
predict merger rates too low to be of observational interest. In this paper we
explore the possibility that black holes become members of close binaries via
dynamical interactions with other stars in dense stellar systems. In star
clusters, black holes become the most massive objects within a few tens of
millions of years; dynamical relaxation then causes them to sink to the cluster
core, where they form binaries. These black-hole binaries become more tightly
bound by superelastic encounters with other cluster members, and are ultimately
ejected from the cluster. The majority of escaping black-hole binaries have
orbital periods short enough and eccentricities high enough that the emission
of gravitational radiation causes them to coalesce within a few billion years.
We predict a black-hole merger rate of about per year per
cubic megaparsec, implying gravity wave detection rates substantially greater
than the corresponding rates from neutron star mergers. For the first
generation Laser Interferometer Gravitational-Wave Observatory (LIGO-I), we
expect about one detection during the first two years of operation. For its
successor LIGO-II, the rate rises to roughly one detection per day. The
uncertainties in these numbers are large. Event rates may drop by about an
order of magnitude if the most massive clusters eject their black hole binaries
early in their evolution.Comment: 12 pages, ApJL in pres
How many young star clusters exist in the Galactic center?
We study the evolution and observability of young compact star clusters
within about 200pc of the Galactic center. Calculations are performed using
direct N-body integration on the GRAPE-4, including the effects of both stellar
and binary evolution and the external influence of the Galaxy. The results of
these detailed calculations are used to calibrate a simplified model applicable
over a wider range of cluster initial conditions. We find that clusters within
200 pc from the Galactic center dissolve within about 70 Myr. However, their
projected densities drop below the background density in the direction of the
Galactic center within 20 Myr, effectively making these clusters undetectable
after that time. Clusters farther from the Galactic center but at the same
projected distance are more strongly affected by this selection effect, and may
go undetected for their entire lifetimes. Based on these findings, we conclude
that the region within 200 pc of the Galactic center could easily harbor some
50 clusters with properties similar to those of the Arches or the Quintuplet
systems.Comment: ApJ Letters in pres
Improving Fiber Alignment in HARDI by Combining Contextual PDE Flow with Constrained Spherical Deconvolution
We propose two strategies to improve the quality of tractography results
computed from diffusion weighted magnetic resonance imaging (DW-MRI) data. Both
methods are based on the same PDE framework, defined in the coupled space of
positions and orientations, associated with a stochastic process describing the
enhancement of elongated structures while preserving crossing structures. In
the first method we use the enhancement PDE for contextual regularization of a
fiber orientation distribution (FOD) that is obtained on individual voxels from
high angular resolution diffusion imaging (HARDI) data via constrained
spherical deconvolution (CSD). Thereby we improve the FOD as input for
subsequent tractography. Secondly, we introduce the fiber to bundle coherence
(FBC), a measure for quantification of fiber alignment. The FBC is computed
from a tractography result using the same PDE framework and provides a
criterion for removing the spurious fibers. We validate the proposed
combination of CSD and enhancement on phantom data and on human data, acquired
with different scanning protocols. On the phantom data we find that PDE
enhancements improve both local metrics and global metrics of tractography
results, compared to CSD without enhancements. On the human data we show that
the enhancements allow for a better reconstruction of crossing fiber bundles
and they reduce the variability of the tractography output with respect to the
acquisition parameters. Finally, we show that both the enhancement of the FODs
and the use of the FBC measure on the tractography improve the stability with
respect to different stochastic realizations of probabilistic tractography.
This is shown in a clinical application: the reconstruction of the optic
radiation for epilepsy surgery planning
The formation of the solar system
The solar system started to form about 4.56 Gyr ago and despite the long
intervening time span, there still exist several clues about its formation. The
three major sources for this information are meteorites, the present solar
system structure and the planet-forming systems around young stars. In this
introduction we give an overview of the current understanding of the solar
system formation from all these different research fields. This includes the
question of the lifetime of the solar protoplanetary disc, the different stages
of planet formation, their duration, and their relative importance. We consider
whether meteorite evidence and observations of protoplanetary discs point in
the same direction. This will tell us whether our solar system had a typical
formation history or an exceptional one. There are also many indications that
the solar system formed as part of a star cluster. Here we examine the types of
cluster the Sun could have formed in, especially whether its stellar density
was at any stage high enough to influence the properties of today's solar
system. The likelihood of identifying siblings of the Sun is discussed.
Finally, the possible dynamical evolution of the solar system since its
formation and its future are considered.Comment: 36 pages, 7 figures, invited review in Physica Script
A log-quadratic relation for predicting supermassive black hole masses from the host bulge Sersic index
We reinvestigate the correlation between black hole mass and bulge
concentration. With an increased galaxy sample, updated estimates of galaxy
distances, black hole masses, and Sersic indices `n' - a measure of
concentration - we perform a least-squares regression analysis to obtain a
relation suitable for the purpose of predicting black hole masses in other
galaxies. In addition to the linear relation, log(M_bh) = 7.81(+/-0.08) +
2.69(+/-0.28)[log(n/3)] with epsilon_(intrin)=0.31 dex, we investigated the
possibility of a higher order M_bh-n relation, finding the second order term in
the best-fitting quadratic relation to be inconsistent with a value of zero at
greater than the 99.99% confidence level. The optimal relation is given by
log(M_bh) = 7.98(+/-0.09) + 3.70(+/-0.46)[log(n/3)] -
3.10(+/-0.84)[log(n/3)]^2, with epsilon_(intrin)=0.18 dex and a total absolute
scatter of 0.31 dex. Extrapolating the quadratic relation, it predicts black
holes with masses of ~10^3 M_sun in n=0.5 dwarf elliptical galaxies, compared
to ~10^5 M_sun from the linear relation, and an upper bound on the largest
black hole masses in the local universe, equal to 1.2^{+2.6}_{-0.4}x10^9
M_sun}. In addition, we show that the nuclear star clusters at the centers of
low-luminosity elliptical galaxies follow an extrapolation of the same
quadratic relation. Moreover, we speculate that the merger of two such
nucleated galaxies, accompanied by the merger and runaway collision of their
central star clusters, may result in the late-time formation of some
supermassive black holes. Finally, we predict the existence of, and provide
equations for, a relation between M_bh and the central surface brightness of
the host bulge
A pilgrimage to gravity on GPUs
In this short review we present the developments over the last 5 decades that
have led to the use of Graphics Processing Units (GPUs) for astrophysical
simulations. Since the introduction of NVIDIA's Compute Unified Device
Architecture (CUDA) in 2007 the GPU has become a valuable tool for N-body
simulations and is so popular these days that almost all papers about high
precision N-body simulations use methods that are accelerated by GPUs. With the
GPU hardware becoming more advanced and being used for more advanced algorithms
like gravitational tree-codes we see a bright future for GPU like hardware in
computational astrophysics.Comment: To appear in: European Physical Journal "Special Topics" : "Computer
Simulations on Graphics Processing Units" . 18 pages, 8 figure
Dynamical Processes in Globular Clusters
Globular clusters are among the most congested stellar systems in the
Universe. Internal dynamical evolution drives them toward states of high
central density, while simultaneously concentrating the most massive stars and
binary systems in their cores. As a result, these clusters are expected to be
sites of frequent close encounters and physical collisions between stars and
binaries, making them efficient factories for the production of interesting and
observable astrophysical exotica. I describe some elements of the competition
among stellar dynamics, stellar evolution, and other processes that control
globular cluster dynamics, with particular emphasis on pathways that may lead
to the formation of blue stragglers.Comment: Chapter 10, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G.
Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
The Effect of Pre-Main Sequence Stars on Star Cluster Dynamics
We investigate the effects of the addition of pre-main sequence evolution to
star cluster simulations. We allowed stars to follow pre-main sequence tracks
that begin at the deuterium burning birthline and end at the zero age main
sequence. We compared our simulations to ones in which the stars began their
lives at the zero age main sequence, and also investigated the effects of
particular choices for initial binary orbital parameters. We find that the
inclusion of the pre-main sequence phase results in a slightly higher core
concentration, lower binary fraction, and fewer hard binary systems. In
general, the global properties of star clusters remain almost unchanged, but
the properties of the binary star population in the cluster can be dramatically
modified by the correct treatment of the pre-main sequence stage.Comment: 40 pages ApJ preprint style Accepted by Ap
- …