384 research outputs found

    Nanoscale structure evolution in alkoxide-carboxylate sol-gel precursor solutions of barium titanate

    Get PDF
    The evolution of hydrolyzed alkoxide–carboxylate sol–gel precursor solutions of barium titanate was investigated by time-resolved small-angle X-ray scattering (SAXS) and viscosity measurements. Sols were prepared from titanium(IV) iso-propoxide in 2-methoxyethanol and barium acetate in acetic acid. Analysis of the experimental data showed that the evolution of the sol went through three stages. In stage (i) mainly isolated primary scatterers of ∼0.45 nm radius formed. Stage (ii) showed the growth of branched oligomeric mass fractal-like structures with a 3–15 nm gyration radius and fractal dimension 1.9–1.5, as well as the presence of internally ordered structures with a correlation length of ∼1.8 nm. In stage (iii), higher-level hierarchy developed in the sol, probably due to cluster–cluster aggregation of the fractal-like branched oligomers into a gel. The data suggest that the agglomerates of primary scatterers are Ti-based and are built of small spherical primary particles of very similar size. The inorganic core of these particles had a radius of ∼0.45 nm, and they had an outer organic ligand shell of ∼0.45 nm thickness. Ba-related species remained dissolved in the acetic acid matrix and were present as ions. No Ba-related species could be seen with SAXS. Ba seemed to exert an indirect influence on the growth and precipitation or stabilization of the titanium-based structures from solution

    Structural Characterization of Surfactant-Coated Bimetallic Cobalt/Nickel Nanoclusters by XPS, EXAFS, WAXS, and SAXS

    Get PDF
    Cobalt nickel bimetallic nanoparticles were synthesized by changing the sequence of the chemical reduction of Co(II) and Ni(II) ions confined in the core of bis(2-ethylhexyl)phosphate (2)., and Ni(DEHP)(2). The reduction was carried out by mixing, sequentially or contemporaneously, fixed amounts of n-heptane solution of Co(DEHP)2 and Ni(DEHP)2 micelles with a solution of sodium borohydride in ethanol at a fixed (reductant)/(total metal) molar ratio. This procedure involves the rapid formation of surfactant-coated nanoparticles, indicated as Co/Ni (Co after Ni), Ni/Co (Ni after Co), and Co + Ni (simultaneous), followed by their slow separation as nanostructures embedded in a sodium bis(2-ethylhexyl)phosphate matrix. The resulting composites, together with those obtained by reducing the n-heptane solutions of pure Co(DEHP)(2) or Ni(DEHP)(2), were characterized by XPS, EXAFS, WAXS, and SAXS. The data analysis confirms the presence of nanometer-sized surfactant-coated cobalt, nickel, and cobalt/nickel particles. As expected, the composition and internal structure of cobalt/nickel bimetallic nanoparticles are influenced by the preparation sequence as well as by the "chemical affinity" between the surfactant and the metal. However, some atomic-scale physicochemical processes play a subtle role in determining the structural features of bimetallic nanoparticles. Further effects due to the competition between nanoparticle growing process and surfactant adsorption at the nanoparticle surface were observed

    In situ monitoring of laser-induced periodic surface structures formation on polymer films by grazing incidence small-angle X-ray scattering

    Get PDF
    9 pags.; 9 figs.© 2015 American Chemical Society. The formation of laser-induced periodic surface structures (LIPSS) on model spin-coated polymer films has been followed in situ by grazing incidence small-angle X-ray scattering (GISAXS) using synchrotron radiation. The samples were irradiated at different repetition rates ranging from 1 up to 10 Hz by using the fourth harmonic of a Nd:YAG laser (266 nm) with pulses of 8 ns. Simultaneously, GISAXS patterns were acquired during laser irradiation. The variation of both the GISAXS signal with the number of pulses and the LIPSS period with laser irradiation time is revealing key kinetic aspects of the nanostructure formation process. By considering LIPSS as one-dimensional paracrystalline lattice and using a correlation found between the paracrystalline disorder parameter, g, and the number of reflections observed in the GISAXS patterns, the variation of the structural order of LIPSS can be assessed. The role of the laser repetition rate in the nanostructure formation has been clarified. For high pulse repetition rates (i.e., 10 Hz), LIPSS evolve in time to reach the expected period matching the wavelength of the irradiating laser. For lower pulse repetition rates LIPSS formation is less effective, and the period of the ripples never reaches the wavelength value. Results support and provide information on the existence of a feedback mechanism for LIPSS formation in polymer films.The authors gratefully acknowledge financial support from the MINECO (MAT2011-23455, MAT2012-33517 and CTQ 2013-43086-P). E.R., I.M.-F., and A.R-R. also thank MINECO for a Ramon y Cajal contract (RYC-2011-08069) and FPI ́ fellowships (BES-2010-030074 and BES-2013-062620).Peer Reviewe

    How does dense phase CO2 influence the phase behaviour of block copolymers synthesised by dispersion polymerisation?

    Get PDF
    Block copolymers synthesised in supercritical CO2 dispersion undergo in situ self-assembly which can result in a range of nanostructured microparticles. However, our previous study revealed that copolymers with different block combinations possessed different microphase separated morphologies at identical block volume fractions. In this paper, we follow up those initial observations. By examining the phase behaviour of a selection of structurally diverse block copolymers, we explore the structural factors which influence the conflicting self-assembly behaviours. The composition dependence of the morphology is found to be strongly related to the CO2-philicity of the second block relative to poly(methyl methacrylate) (PMMA). Whilst PMMA-b-poly(benzyl methacrylate) (PBzMA) and PMMA-b-poly(N,N-dimethylaminoethylmethacrylate) (PDMAEMA) phase behaviour follows traditional diblock copolymer phase diagrams, PMMA-b-poly(styrene) (PS) and PMMA-b-poly(4-vinyl pyridine) (P4VP), which comprise blocks with the greatest contrast in CO2-philicity, self-assemble into unexpected morphologies at several different block volume fractions. The morphology of these copolymers in the microparticulate form was found to revert to the predicted equilibrium morphology when the microparticles were re-cast as films and thermally annealed. These findings provide strong evidence that CO2 acts as a block-selective solvent during synthesis. The CO2-selectivity was exploited to fabricate various kinetically trapped non-lamellar morphologies in symmetrical PMMA-b-PS copolymers by tuning the ratio of polymer:CO2. Our data demonstrate that CO2 can be exploited as a facile process modification to control the self-assembly of block copolymers within particles

    Tuning the Energetic Landscape of Ruddlesden-Popper Perovskite Films for Efficient Solar Cells

    Get PDF
    Ruddlesden-Popper perovskite films deposited with different methods show very diverse phase segregation and composition. When DMSO is used as solvent, the conventional method based on spin-coating and annealing produces very poor devices, whereas the vacuum-assisted method proposed here allows obtaining devices with efficiency up to 14.14%. The conventional method gives rise to a three-dimensional (3D)-like phase on the top of the film but dominant n = 2 phase with large domains (∼40 μm) at the bottom of the film. These n = 2 domains are oriented with their inorganic slabs parallel to the substrate and inhibit the charge transport in the vertical direction. Consequently, severe monomolecular and bimolecular charge recombination occurs in the solar cells. Conversely, the vacuum-assisted method yields films with a 3D-like phase dominant throughout their entire thickness and only a small amount of n ≤ 2 domains of limited dimensions (∼3 μm) at the bottom, which facilitate charge transport and reduce charge recombination

    Photochromism in Ruddlesden-Popper copper-based perovskites:A light-induced change of coordination number at the surface

    Get PDF
    Ruddlesden-Popper organic-inorganic hybrid copper-based perovskites have been studied for decades owing to a variety of interesting properties, such as thermochromism and piezochromism, and the mechanisms behind these phenomena have been explained. Another possible property of these materials that has seldomly been investigated is photochromism. In this work, the photochromic properties of bis(phenethylammonium) tetrachlorocuprate (also known as phenethylammonium copper chloride) are reported for the first time. This material has attracted scientific interest owing to the fact that it shows both ferroelectric and ferromagnetic behavior. This work highlights the difference in stability between two Ruddlesden-Popper copper-based perovskites - with phenethylammonium (PEA) or methylammonium (MA) as the cations - during external stimuli. Various techniques, such as Raman and X-ray photoelectron spectroscopy, and grazing-incidence wide-angle X-ray scattering, combined with optical studies, were used to investigate the underlying photochemical processes at a molecular level. It is found that for the PEA compound, ultraviolet illumination causes a color change from yellow to brown. This is the result of two independent events, namely a Cu2+ reduction reaction and a transition from an octahedral copper-chloride structure to square-planar CuCl42-. After illumination, the material (brown color) is unstable in air, which is evident from a color change back to yellow. Interestingly, the similar compound bis(methylammonium) tetrachlorocuprate does not display photochromic behavior, which is attributed to the different nature of the two organic cations
    corecore