408 research outputs found

    Addition of Ammonium Thiocyanate Alters the Microstructure and Energetic Landscape of 2D/3D Perovskite Films

    Get PDF
    Mixtures of low-dimensional and 3D perovskite phases have attracted significant attention due to their improved stability with respect to purely 3D perovskites. One of the strategies to gain control over the complex crystallization of these 2D/3D perovskite films and obtain well-ordered thin films is through the additive engineering of the precursor solution. In this work, the influence of ammonium thiocyanate addition on the microstructural and optical properties of thin films of (PEA)2(MA)n−1PbnI3n+1 is investigated for different n values.</p

    Burosumab therapy in children with x-linked hypophosphatemia

    Get PDF
    BACKGROUND X-linked hypophosphatemia is characterized by increased secretion of fibroblast growth factor 23 (FGF-23), which leads to hypophosphatemia and consequently rickets, osteomalacia, and skeletal deformities. We investigated burosumab, a monoclonal antibody that targets FGF-23, in patients with X-linked hypophosphatemia. METHODS In an open-label, phase 2 trial, we randomly assigned 52 children with X-linked hypophosphatemia, in a 1:1 ratio, to receive subcutaneous burosumab either every 2 weeks or every 4 weeks; the dose was adjusted to achieve a serum phosphorus level at the low end of the normal range. The primary end point was the change from baseline to weeks 40 and 64 in the Thacher rickets severity total score (ranging from 0 to 10, with higher scores indicating greater disease severity). In addition, the Radiographic Global Impression of Change was used to evaluate rachitic changes from baseline to week 40 and to week 64. Additional end points were changes in pharmacodynamic markers, linear growth, physical ability, and patient-reported outcomes and the incidence of adverse events. RESULTS The mean Thacher rickets severity total score decreased from 1.9 at baseline to 0.8 at week 40 with every-2-week dosing and from 1.7 at baseline to 1.1 at week 40 with every-4-week dosing (P<0.001 for both comparisons); these improvements persisted at week 64. The mean serum phosphorus level increased after the first dose in both groups, and more than half the patients in both groups had levels within the normal range (3.2 to 6.1 mg per deciliter [1.0 to 2.0 mmol per liter]) by week 6. Stable serum phosphorus levels were maintained through week 64 with every-2-week dosing. Renal tubular phosphate reabsorption increased from baseline in both groups, with an overall mean increase of 0.98 mg per deciliter (0.32 mmol per liter). The mean dose of burosumab at week 40 was 0.98 mg per kilogram of body weight with every-2-week dosing and 1.50 mg per kilogram with every-4-week dosing. Across both groups, the mean serum alkaline phosphatase level decreased from 459 U per liter at baseline to 369 U per liter at week 64. The mean standing-height z score increased in both groups, with greater improvement seen at all time points with every-2-week dosing (an increase from baseline of 0.19 at week 64) than with every-4-week dosing (an increase from baseline of 0.12 at week 64). Physical ability improved and pain decreased. Nearly all the adverse events were mild or moderate in severity. CONCLUSIONS In children with X-linked hypophosphatemia, treatment with burosumab improved renal tubular phosphate reabsorption, serum phosphorus levels, linear growth, and physical function and reduced pain and the severity of rickets

    Dietary potassium influences kidney maintenance of serum phosphorus concentration

    Get PDF
    Dietary potassium influences kidney maintenance of serum phosphorus concentration. In studying the metabolic effects of diet potassium (K+) variation in normal humans, we noted that varying diet K+ within its normal range influenced inorganic phosphorus (Pi) homeostasis and serum calcitriol (1,25-dihydroxyvitamin D) levels. In six men who ingested a constant whole-foods diet containing (per 70kg body wt) 27mmol/day Pi and 52 mEq/day K+, we increased diet K+ to 156 mmol/day with supplements first of potassium bicarbonate (KHCO3) alone and then of potassium chloride (KCL) alone, each for eight days interrupted by an eight-day recovery period of no K+ supplement. Urine Pi decreased promptly with either K+-salt, each inducing a persisting retention of 7 to 10 mmoles Pi, which was dumped during recovery. Fasting serum [Pi] increased with either K+ supplement (P = 0.022, repeated measures analysis of variance); the composite mean serum [Pi] for the two K+-supplement periods exceeded that for the two periods without supplements (P < 0.01, paired t-test). Conversely, the concentration of serum calcitriol decreased with either K+ supplement (P = 0.020). Among subjects, the diet K+-induced increases in serum [Pi] correlated with those in plasma [K+] (r = 0.64, P = 0.027); the decreases in serum calcitriol concentration correlated with the increases in serum [Pi] (r = -0.69, P = 0.014). There were no significant differences among periods in serum parathyroid hormone, ionized calcium, urine cyclic AMP excretion, plasma renin activity, body weight, serum albumin, or creatinine clearance; plasma volume decreased slightly during KCL but not during KHCO3 periods. Thus, diet K+ variation exerts an anion-independent regulatory effect on renal handling of Pi that influences the set-point at which serum [Pi] is maintained at constant diet Pi. That effect of serum [Pi] set-point is directionally appropriate and quantitatively sufficient to provide “fine modulation” of serum calcitriol concentration under ordinary physiological conditions of normal diet K+ variations and normal diet Pi

    Structural characterization of supramolecular hollow nanotubes with atomistic simulations and SAXS

    Get PDF
    Self-assembled nanostructures arise when building blocks spontaneously organize into ordered aggregates that exhibit different properties compared to the disorganized monomers. Here, we study an amphiphilic cyanine dye (C8S3) that is known to self-assemble into double-walled, hollow, nanotubes with interesting optical properties. The molecular packing of the dyes inside the nanotubes, however, remains elusive. To reveal the structural features of the C8S3 nanotubes, we performed atomistic Molecular Dynamics simulations of preformed bilayers and nanotubes. We find that different packing arrangements lead to stable structures, in which the tails of the C8S3 molecules are interdigitated. Our results are verified by SAXS experiments. Together our data provide a detailed structural characterization of the C8S3 nanotubes. Furthermore, our approach was able to resolve the ambiguity inherent from cryo-TEM measurements in calculating the wall thickness of similar systems. The insights obtained are expected to be generally useful for understanding and designing other supramolecular assemblies

    Structural Characterization of Surfactant-Coated Bimetallic Cobalt/Nickel Nanoclusters by XPS, EXAFS, WAXS, and SAXS

    Get PDF
    Cobalt nickel bimetallic nanoparticles were synthesized by changing the sequence of the chemical reduction of Co(II) and Ni(II) ions confined in the core of bis(2-ethylhexyl)phosphate (2)., and Ni(DEHP)(2). The reduction was carried out by mixing, sequentially or contemporaneously, fixed amounts of n-heptane solution of Co(DEHP)2 and Ni(DEHP)2 micelles with a solution of sodium borohydride in ethanol at a fixed (reductant)/(total metal) molar ratio. This procedure involves the rapid formation of surfactant-coated nanoparticles, indicated as Co/Ni (Co after Ni), Ni/Co (Ni after Co), and Co + Ni (simultaneous), followed by their slow separation as nanostructures embedded in a sodium bis(2-ethylhexyl)phosphate matrix. The resulting composites, together with those obtained by reducing the n-heptane solutions of pure Co(DEHP)(2) or Ni(DEHP)(2), were characterized by XPS, EXAFS, WAXS, and SAXS. The data analysis confirms the presence of nanometer-sized surfactant-coated cobalt, nickel, and cobalt/nickel particles. As expected, the composition and internal structure of cobalt/nickel bimetallic nanoparticles are influenced by the preparation sequence as well as by the "chemical affinity" between the surfactant and the metal. However, some atomic-scale physicochemical processes play a subtle role in determining the structural features of bimetallic nanoparticles. Further effects due to the competition between nanoparticle growing process and surfactant adsorption at the nanoparticle surface were observed

    In situ monitoring of laser-induced periodic surface structures formation on polymer films by grazing incidence small-angle X-ray scattering

    Get PDF
    9 pags.; 9 figs.© 2015 American Chemical Society. The formation of laser-induced periodic surface structures (LIPSS) on model spin-coated polymer films has been followed in situ by grazing incidence small-angle X-ray scattering (GISAXS) using synchrotron radiation. The samples were irradiated at different repetition rates ranging from 1 up to 10 Hz by using the fourth harmonic of a Nd:YAG laser (266 nm) with pulses of 8 ns. Simultaneously, GISAXS patterns were acquired during laser irradiation. The variation of both the GISAXS signal with the number of pulses and the LIPSS period with laser irradiation time is revealing key kinetic aspects of the nanostructure formation process. By considering LIPSS as one-dimensional paracrystalline lattice and using a correlation found between the paracrystalline disorder parameter, g, and the number of reflections observed in the GISAXS patterns, the variation of the structural order of LIPSS can be assessed. The role of the laser repetition rate in the nanostructure formation has been clarified. For high pulse repetition rates (i.e., 10 Hz), LIPSS evolve in time to reach the expected period matching the wavelength of the irradiating laser. For lower pulse repetition rates LIPSS formation is less effective, and the period of the ripples never reaches the wavelength value. Results support and provide information on the existence of a feedback mechanism for LIPSS formation in polymer films.The authors gratefully acknowledge financial support from the MINECO (MAT2011-23455, MAT2012-33517 and CTQ 2013-43086-P). E.R., I.M.-F., and A.R-R. also thank MINECO for a Ramon y Cajal contract (RYC-2011-08069) and FPI ́ fellowships (BES-2010-030074 and BES-2013-062620).Peer Reviewe

    Dynamic Control of a Multistate Chiral Supramolecular Polymer in Water

    Get PDF
    Natural systems transfer chiral information across multiple length scales through dynamic supramolecular interaction to accomplish various functions. Inspired by nature, many exquisite artificial supramolecular systems have been developed, in which controlling the supramolecular chirality holds the key to completing specific tasks. However, to achieve precise and non-invasive control and modulation of chirality in these systems remains challenging. As a non-invasive stimulus, light can be used to remotely control the chirality with high spatiotemporal precision. In contrast to common molecular switches, a synthetic molecular motor can act as a multistate chiroptical switch with unidirectional rotation, offering major potential to regulate more complex functions. Here, we present a light-driven molecular motor-based supramolecular polymer, in which the intrinsic chirality is transferred to the nanofibers, and the rotation of molecular motors governs the chirality and morphology of the supramolecular polymer. The resulting supramolecular polymer also exhibits light-controlled multistate aggregation-induced emission. These findings present a photochemically tunable multistate dynamic supramolecular system in water and pave the way for developing molecular motor-driven chiroptical materials
    corecore