25 research outputs found

    The evolution of social philopatry in female primates

    Get PDF
    The transition from solitary life to sociality is considered one of the major transitions in evolution. In primates, this transition is currently not well understood. Traditional verbal models appear insufficient to unravel the complex interplay of environmental and demographic factors involved in the evolution of primate sociality, and recent phylogenetic reconstructions have produced conflicting results. We therefore analyze a theoretical model for the evolution of female social philopatry that sheds new light on the question why most primates live in groups. In individual-based simulations, we study the evolution of dispersal strategies of both resident females and their offspring. The model reveals that social philopatry can evolve through kin selection, even if retention of offspring is costly in terms of within-group resource competition and provides no direct benefits. Our model supports the role of predator avoidance as a selective pressure for group-living in primates, but it also suggests that a second benefit of group-living, communal resource defense, might be required to trigger the evolution of sizable groups. Lastly, our model reveals that seemingly small differences in demographic parameters can have profound effects on primate social evolution

    Author Correction: Ecology, evolution and spillover of coronaviruses from bats.

    Get PDF
    In the past two decades, three coronaviruses with ancestral origins in bats have emerged and caused widespread outbreaks in humans, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first SARS epidemic in 2002–2003, the appreciation of bats as key hosts of zoonotic coronaviruses has advanced rapidly. More than 4,000 coronavirus sequences from 14 bat families have been identified, yet the true diversity of bat coronaviruses is probably much greater. Given that bats are the likely evolutionary source for several human coronaviruses, including strains that cause mild upper respiratory tract disease, their role in historic and future pandemics requires ongoing investigation. We review and integrate information on bat–coronavirus interactions at the molecular, tissue, host and population levels. We identify critical gaps in knowledge of bat coronaviruses, which relate to spillover and pandemic risk, including the pathways to zoonotic spillover, the infection dynamics within bat reservoir hosts, the role of prior adaptation in intermediate hosts for zoonotic transmission and the viral genotypes or traits that predict zoonotic capacity and pandemic potential. Filling these knowledge gaps may help prevent the next pandemic

    Analysis of exotic squirrel trade and detection of human infections with variegated squirrel bornavirus 1, Germany, 2005 to 2018

    Get PDF
    Following the discovery in 2015 of the variegated squirrel bornavirus 1 (VSBV-1) in fatal encephalitis cases among exotic squirrel breeders and a zoo animal caretaker in Germany, a case definition was developed. It was employed during trace-back animal trade investigations and sero-epidemiological studies among breeders and zoo animal caretakers of holdings with VSBV-1 infected squirrels. During the investigation, two possible human cases who had died of encephalitis were identified retrospectively among the squirrel breeders. Moreover, one probable human case was detected among the breeders who had a positive memory T-cell response to VSBV-1 antigen and antibodies against VSBV-1. The low rate of seropositivity found among living persons in risk groups that handle exotic squirrels privately or at zoos may reflect rareness of exposure to VSBV-1 during animal contact, a high lethality of infection or a combination of these factors. As a precaution against human exposure, testing of exotic squirrels for VSBV-1 infection and/or avoiding direct contact with exotic squirrels in zoos and private holdings is strongly advised.Peer Reviewe

    Stability of Monkeypox Virus in Body Fluids and Wastewater

    No full text
    An outbreak of human mpox infection in nonendemic countries appears to have been driven largely by transmission through body fluids or skin-to-skin contact during sexual activity. We evaluated the stability of monkeypox virus (MPXV) in different environments and specific body fluids and tested the effectiveness of decontamination methodologies. MPXV decayed faster at higher temperatures, and rates varied considerably depending on the medium in which virus was suspended, both in solution and on surfaces. More proteinaceous fluids supported greater persistence. Chlorination was an effective decontamination technique, but only at higher concentrations. Wastewater was more difficult to decontaminate than plain deionized water; testing for infectious MPXV could be a helpful addition to PCR-based wastewater surveillance when high levels of viral DNA are detected. Our findings suggest that, because virus stability is sufficient to support environmental MPXV transmission in healthcare settings, exposure and dose-response will be limiting factors for those transmission routes

    High-Fat High-Sugar Diet-Induced Changes in the Lipid Metabolism Are Associated with Mildly Increased COVID-19 Severity and Delayed Recovery in the Syrian Hamster

    No full text
    Pre-existing comorbidities such as obesity or metabolic diseases can adversely affect the clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet on COVID-19 outcome. We observed increased weight loss and lung pathology, such as exudate, vasculitis, hemorrhage, fibrin, and edema, delayed viral clearance and functional lung recovery, and prolonged viral shedding. This was accompanied by an altered, but not significantly different, systemic IL-10 and IL-6 profile, as well as a dysregulated serum lipid response dominated by polyunsaturated fatty acid-containing phosphatidylethanolamine, partially recapitulating cytokine and lipid responses associated with severe human COVID-19. Our data support the hamster model for testing restrictive or targeted diets and immunomodulatory therapies to mediate the adverse effects of metabolic disease on COVID-19

    OraSure InteliSwab™ Rapid Antigen Test Performance with the SARS-CoV-2 Variants of Concern—Alpha, Beta, Gamma, Delta, and Omicron

    No full text
    The emergence of SARS-CoV-2 in the human population and the resulting COVID-19 pandemic have led to the development of various diagnostic tests. The OraSure InteliSwab™ COVID-19 Rapid Test is a recently developed and FDA emergency use-authorized rapid antigen-detecting test that functions as a lateral flow device targeting the nucleocapsid protein. Due to SARS-CoV-2 evolution, there is a need to evaluate the sensitivity of rapid antigen-detecting tests for new variants, especially variants of concern such as Omicron. In this study, the sensitivity of the OraSure InteliSwab™ Test was investigated using cultured strains of the known variants of concern (VOCs, Alpha, Beta, Gamma, Delta, and Omicron) and the ancestral lineage (lineage A). Based on dilution series in cell culture medium, an approximate limit of detection for each variant was determined. The OraSure InteliSwab™ Test showed an overall comparable performance using recombinant nucleocapsid protein and different cultured variants, with recorded limits of detection ranging between 3.77 × 105 and 9.13 × 105 RNA copies/mL. Finally, the sensitivity was evaluated using oropharyngeal swabs from Syrian golden hamsters inoculated with the six VOCs. Ultimately, the OraSure InteliSwab™ COVID-19 Rapid Test showed no decrease in sensitivity between the ancestral SARS-CoV-2 strain and any VOCs including Omicron
    corecore