11 research outputs found
Konzipierung und Realisierung einer Arbeitsfolge zur umformtechnischen Herstellung einer durchgehenden Hohlkontur, eines definierten Halbzeuges, unter weitestgehendem Erhalt der bestehenden AuĂźenkontur.
Im Bereich der Fertigung von Hohlwellen stehen zahlreiche Fertigungsvarianten zur Verfügung, die je nach Ausgangssituation, Anforderungen an das Bauteil und den bestehenden Technologiepark des Herstellers unterschiedliche Potenziale bieten. In der geplanten Arbeitsfolge wird aufgrund der Forderung nach einer umformenden Fertigung das Bohrungsdrücken als Vorzugsvariante untersucht. Den Ausgang bildet dabei ein in einer horizontalen Hatebur-Presse gefertigtes Schmiedeteil. Dieses Schmiedeteil kann aufgrund seiner komplexen Geometrie, durch Bohrungsdrücken nicht durchgängig hohl geformt werden. Da die Schmiedeteilgeometrie laut VW Kassel restriktiv und nicht optimierbar ist, wird es erforderlich sein, mit einer dem Bohrungsdrücken nachgeschalteten Technologie, den restlichen Querschnitt zu verdängen. Mit dem Anspruch einer weitestgehend umformenden Fertigungskette wird im Rahmen dieser Arbeit zur Realisierung der durchgehenden Hohlform nach einer umformtechnischen Lösung gesucht
FIT-4-AMANDA - STACK-ROBOTER AUSGELIEFERT. Automatische Fertigungsanlage fĂĽr PEM-Stacks
Die Brennstoffzellentechnologie bietet eine immense Chance für eine zukünftige emissionsfreie Mobilität. Eine der größten Herausforderungen für deren Durchbruch sind allerdings die aktuell noch hohen Kosten im Vergleich zu den marktetablierten Benzin- oder Dieselantrieben. Dies ist vor allem auf den Einsatz von nicht standardisierten Komponenten und die noch nicht ausreichend automatisierte Produktion von Polymer-Elektrolyt-Membran-Brennstoffzellen-Stacks (PEMFC) zurückzuführen, was diese vergleichsweise teuer macht. In dem von der EU geförderten Entwicklungsprojekt Fit-4-AMandA (Fit for Automatic Manufacturing and Assembly) soll daher gezielt auf die automatisierte Serienfertigung von PEM-Stacks und deren Komponenten eingegangen werden. Die gewonnenen Erkenntnisse könnten dann einen Beitrag zur wirtschaftlichen Herstellung von Brennstoffzellensystemen in größeren Stückzahlen leisten
Database on potential customers and related, specific business cases divided by use case: Report
Fit-4-AMandA focuses on the industrialisation of PEMFC stack components and stack assembly to deliver large quantities of affordable fuel cell systems in order to answer the emerging market demand. This report contains a study of the business field and the possible use cases, carried out within the framework of the project. It further presents an analysis of potential customers for the developed products in order to optimise the exploitation of the project results. This deliverable is structured in three parts:• Part 1: Brief overview of market opportunities, characteristics and risks• Part 2: analysis of potential customers• Part 3: overview of hydrogen infrastructure, especially hydrogen refilling stations in Europe. Firstly, this report presents market opportunities, both short and medium term along with motivation of the relevant project partners to bring the Fit-4-AMandA technologies to the market. Secondly, this report presents the analyses of application cases for potential customers and, assessments of the opportunities and risks in the hydrogen economy. Thirdly, the report gives a brief overview of the hydrogen refuelling stations within Europe
Overcoming the Challenges for a Mass Manufacturing Machine for the Assembly of PEMFC Stacks
One of the major obstacles standing in the way of a break-through in fuel cell technology is ist relatively high costs compared to well established fossil-based technologies. The reasons for these high costs predominantly lie in the use of non-standardized components, complex system components, and non-automated production of fuel cells. This problem can be identified at multiple levels, for example, the electrochemically active components of the fuel cell stack, peripheral components of the fuel cell system, and eventually on the level of stack and system assembly. This article focused on the industrialization of polymer electrolyte membrane fuel cell (PEMFC) stack components and assembly. To achieve this, the first step is the formulation of the requirement specifications for the automated PEMFC stack production. The developed mass manufacturing machine (MMM) enables a reduction of the assembly time of a cell fuel cell stack to 15 minutes. Furthermore the targeted automation level is theoretically capable of producing up to 10,000 fuel cell stacks per year. This will result in a ~50% stack cost reduction through economies of scale and increased automation. The modular concept is scalable to meet increasing future demand which is essential for the market ramp-up and success of this technology
Analysis on the supportive technology for optimized manufacturability vs stack performance
The content of this document is a technology and business study in the field of fuel cell technologies in the transport sector (parcel delivery), depending on government requirements (latest pollution laws, etc.) and focusing on the technical aspects. It will give an overall outlook regarding future fuel cell EU targets, resulting in a pre-selection of relevant (present) stacks. The critical technical aspects related to the targeted production ratio will be given and illuminated. In cooperation with WP 2, a review will be performed regarding advantageous manufacturing technologies and strategies: WP2 Redesign current stack and stack design components for mass production and design to-cost. For this purpose, an overview of state of the art manufacturing systems will be provided. In close collaboration with the consortium partners the correct balance has been determined between manufacturability and stack performance. PM has predefined their current and their target automation, production rate and test cycle time for fuel cell stacks. EWii has calculated their current and their target automation and production rate of fuel cell stack components and important requirements regarding quality control and testing, supported by TUC. Based on this PM has also defined a plan for upscaling its balance of plant (BoP) component assembling capabilities to complement the implementation of the automated stack manufacturing. Critical technical aspects are pointed out regarding the targeted production ratio. In order to improve the understanding of the recommendations and related guidance developed in this report, reference to the main objective or product requirements of UPS (delivery service) shall be given. For the delivery sector, it is important to have a range extender for the delivery cars. The demands placed on such range extenders by the parcel service are short charging or refuelling times, and much longer service life compared to privately used cars. However, features of the FC stack for LCV application especially as a range extender such as dimension, weight and power range tend to be subordinate to those prioritized in the private automotive sector. Other specifications may be more critical such as lifetime requirements of up to 20,000 operating hours or even more
Analysis of manufacturing processes for metallic and composite bipolar plates
Fuel cells are an excellent opportunity to address the challenges of the energy supply of the future. The polymer electrolyte membrane fuel cell (PEMFC) stack consists of several core components such as the bipolar plates (BPP) and membrane electrode assembly (MEA).
BPPs have an influence on stack dimensions, performance and lifetime as well as costs. The challenge is to design an optimal BPP for specific applications, considering the manufacturing effort and costs. Basically, two material concepts are currently available: polymer composite materials or metals. Compared to metallic BPPs, polymer-based BPPs show a longer service life and allow a high geometrical flexibility. Metallic BPPs possess a very thin overall thickness which makes them preferable for use in commercial automotive sector. Depending on the base material, different manufacturing processes are required. This article presents a comparison and an assessment of BPPs regarding possible manufacturing processes as well as resulting costs
Analysis of manufacturing processes for metallic and composite bipolar plates
Fuel cells are an excellent opportunity to address the challenges of the energy supply of the future. The polymer electrolyte membrane fuel cell (PEMFC) stack consists of several core components such as the bipolar plates (BPP) and membrane electrode assembly (MEA).
BPPs have an influence on stack dimensions, performance and lifetime as well as costs. The challenge is to design an optimal BPP for specific applications, considering the manufacturing effort and costs. Basically, two material concepts are currently available: polymer composite materials or metals. Compared to metallic BPPs, polymer-based BPPs show a longer service life and allow a high geometrical flexibility. Metallic BPPs possess a very thin overall thickness which makes them preferable for use in commercial automotive sector. Depending on the base material, different manufacturing processes are required. This article presents a comparison and an assessment of BPPs regarding possible manufacturing processes as well as resulting costs
Zielgrößen und Spannungsfelder beim Vergleich von Herstellungs-verfahren für metallische Bipolarplatten
Elektrochemische Energiewandler sind eine hervorragende Möglichkeit, die Energieversorgung der Zu-kunft zu sichern. Eine Schlüsselkomponente der hierfür benötigten Polymer-Elektrolyt-Membran-Brenn-stoffzellen und -Elektrolyseurzellen ist die Bipolarplatte. Für die Herstellung metallischer Bipolarplatten sind verschiedene umformende Fertigungstechnologien geeignet, die sich hinsichtlich erreichbarer Fer-tigungskosten, Endeigenschaften der Bipolarplatte und technologischer Prozessgrenzen unterschei-den. In diesem Artikel werden die aktuell präferierten Fertigungstechnologien wie die wirkmedienba-sierte Blechumformung, sowie das Hohlprägen und das Hohlprägewalzen zur Herstellung von metalli-schen Bipolarplatten miteinander verglichen und bewertet.Electrochemical energy converters are an excellent option to secure the energy supply of the future. A key component of the polymer electrolyte membrane fuel cells and -electrolyser cells required for this purpose is the bipolar plate. Various forming technologies with different manufacturing costs, final prop-erties of the bipolar plates, and technological process limits are suitable for the fabrication of metallic bipolar plates. In this article, the currently preferred manufacturing technologies to produce metallic bipolar plates like precisely media-based sheet forming as well as hollow embossing and roll embossing, are compared and evaluated
Zielgrößen und Spannungsfelder beim Vergleich von Herstellungs-verfahren für metallische Bipolarplatten
Elektrochemische Energiewandler sind eine hervorragende Möglichkeit, die Energieversorgung der Zu-kunft zu sichern. Eine Schlüsselkomponente der hierfür benötigten Polymer-Elektrolyt-Membran-Brenn-stoffzellen und -Elektrolyseurzellen ist die Bipolarplatte. Für die Herstellung metallischer Bipolarplatten sind verschiedene umformende Fertigungstechnologien geeignet, die sich hinsichtlich erreichbarer Fer-tigungskosten, Endeigenschaften der Bipolarplatte und technologischer Prozessgrenzen unterschei-den. In diesem Artikel werden die aktuell präferierten Fertigungstechnologien wie die wirkmedienba-sierte Blechumformung, sowie das Hohlprägen und das Hohlprägewalzen zur Herstellung von metalli-schen Bipolarplatten miteinander verglichen und bewertet.Electrochemical energy converters are an excellent option to secure the energy supply of the future. A key component of the polymer electrolyte membrane fuel cells and -electrolyser cells required for this purpose is the bipolar plate. Various forming technologies with different manufacturing costs, final prop-erties of the bipolar plates, and technological process limits are suitable for the fabrication of metallic bipolar plates. In this article, the currently preferred manufacturing technologies to produce metallic bipolar plates like precisely media-based sheet forming as well as hollow embossing and roll embossing, are compared and evaluated
Zielgrößen und Spannungsfelder beim Vergleich von Herstellungs-verfahren für metallische Bipolarplatten
Elektrochemische Energiewandler sind eine hervorragende Möglichkeit, die Energieversorgung der Zu-kunft zu sichern. Eine Schlüsselkomponente der hierfür benötigten Polymer-Elektrolyt-Membran-Brenn-stoffzellen und -Elektrolyseurzellen ist die Bipolarplatte. Für die Herstellung metallischer Bipolarplatten sind verschiedene umformende Fertigungstechnologien geeignet, die sich hinsichtlich erreichbarer Fer-tigungskosten, Endeigenschaften der Bipolarplatte und technologischer Prozessgrenzen unterschei-den. In diesem Artikel werden die aktuell präferierten Fertigungstechnologien wie die wirkmedienba-sierte Blechumformung, sowie das Hohlprägen und das Hohlprägewalzen zur Herstellung von metalli-schen Bipolarplatten miteinander verglichen und bewertet.Electrochemical energy converters are an excellent option to secure the energy supply of the future. A key component of the polymer electrolyte membrane fuel cells and -electrolyser cells required for this purpose is the bipolar plate. Various forming technologies with different manufacturing costs, final prop-erties of the bipolar plates, and technological process limits are suitable for the fabrication of metallic bipolar plates. In this article, the currently preferred manufacturing technologies to produce metallic bipolar plates like precisely media-based sheet forming as well as hollow embossing and roll embossing, are compared and evaluated