56 research outputs found

    Protocol for Metatranscriptomic analysis of Intestinal Microbiota

    Get PDF
    The objective of this publication is to provide the detailed protocol for metartancriptomisc studies of animal intestinal microbiota. The protocol describes isolation of high quality microbial community RNA from the mammalian intestinal content, subsequent mRNA enrichment, cDNA synthesis and sequencing. Twelve libraries were prepared, pooled in equimolar concentrations into a single library and sequenced on one GS Titanium 70×75 picotiter plate, following this protocol. The total number of reads obtained for 12 libraries was 1,155,062 (average 96,000 per library) and the combined size of 12 libraries was 521 million bases (average 43 million bases per library). The reported size of non-ribosomal RNA library fraction is ~15%, the fraction of non-ribosomal reads is ~17%. Hence we described a robust technique for metranscriptomic studies of animal intestinal microbiota. The double stranded cDNAs, prepared following this protocol, are suitable for pyrosequencing (454, Illumina), clone library construction or could be used to archive and store metaranscriptomic samples

    Prevention of siderophore- mediated gut-derived sepsis due to P. aeruginosa can be achieved without iron provision by maintaining local phosphate abundance: role of pH

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During extreme physiological stress, the intestinal tract can be transformed into a harsh environment characterized by regio- spatial alterations in oxygen, pH, and phosphate concentration. When the human intestine is exposed to extreme medical interventions, the normal flora becomes replaced by pathogenic species whose virulence can be triggered by various physico-chemical cues leading to lethal sepsis. We previously demonstrated that phosphate depletion develops in the mouse intestine following surgical injury and triggers intestinal <it>P. aeruginosa </it>to express a lethal phenotype that can be prevented by oral phosphate ([Pi]) supplementation.</p> <p>Results</p> <p>In this study we examined the role of pH in the protective effect of [Pi] supplementation as it has been shown to be increased in the distal gut following surgical injury. Surgically injured mice drinking 25 mM [Pi] at pH 7.5 and intestinally inoculated with <it>P. aeruginosa </it>had increased mortality compared to mice drinking 25 mM [Pi] at pH 6.0 (p < 0.05). This finding was confirmed in <it>C. elegans</it>. Transcriptional analysis of <it>P. aeruginosa </it>demonstrated enhanced expression of various genes involved in media alkalization at pH 6.0 and a global increase in the expression of all iron-related genes at pH 7.5. Maintaining the pH at 6.0 via phosphate supplementation led to significant attenuation of iron-related genes as demonstrated by microarray and confirmed by QRT-PCR analyses.</p> <p>Conclusion</p> <p>Taken together, these data demonstrate that increase in pH in distal intestine of physiologically stressed host colonized by <it>P. aeruginosa </it>can lead to the expression of siderophore-related virulence in bacteria that can be prevented without providing iron by maintaining local phosphate abundance at pH 6.0. This finding is particularly important as provision of exogenous iron has been shown to have untoward effects when administered to critically ill and septic patients. Given that phosphate, pH, and iron are near universal cues that dictate the virulence status of a broad range of microorganisms relevant to serious gut origin infection and sepsis in critically ill patients, the maintenance of phosphate and pH at appropriate physiologic levels to prevent virulence activation in a site specific manner can be considered as a novel anti-infective therapy in at risk patients.</p

    Exosomes and metabolic functionin mice exposed to alternating dark-light cycles mimicking night shift work schedules

    Get PDF
    Sleep is an important modulator of metabolic function. Disruptions of sleep in circadian rhythm are common in modern societies and are associated with increased risk of developing cardiometabolic disorders. Exosomes are ubiquitous extracellular vesicles that may play a mechanistic role in metabolic derangements. We hypothesized that alternating dark-light cycles mimicking shift work in mice would alter fecal microbiota and colonic epithelium permeability and alter plasma exosome cargo and metabolic function. C57BL/6 mice were randomly assigned to (i) control day light (CL), or (ii) inverted dark-light every 2 weeks for 8 weeks (IN). Body weight, fat mass and HOMA-IR were measured, along with Tregs, metabolic, and resident macrophages in visceral white adipose tissue (vWAT). Fecal water samples were incubated with confluent colonic epithelium cell cultures in electric cell-substrate impedance sensing (ECIS) arrays, and plasma exosomes were added to differentiated adipocytes and insulin-induced pAKT/AKT expression changes were assessed by western blots. Mice exposed to IN showed elevated HOMA-IR, and their fecal samples showed altered microbiota which promote increased permeability of the colonic epithelial cell barrier. Plasma exosomes decreased pAKT/AKT responses to exogenous insulin compared to CL, and altered expression of circadian clock genes. Inflammatory macrophages (Ly-6chigh) were increased in IN-exposed vWAT, while Tregs were decreased. Thus, gut microbiota and the cargo of plasma exosomes are altered by periodic shifts in environmental lighting, and effectively alter metabolic function, possibly via induction of systemic inflammation and altered clock expression in target tissues. Further exploration of exosomal miRNA signatures in shift workers and their putative metabolic organ cell targets appears warranted

    Extracellular Vesicles from Caveolin-Enriched Microdomains Regulate Hyaluronan-Mediated Sustained Vascular Integrity

    Get PDF
    Defects in vascular integrity are an initiating factor in several disease processes. We have previously reported that high molecular weight hyaluronan (HMW-HA), a major glycosaminoglycan in the body, promotes rapid signal transduction in human pulmonary microvascular endothelial cells (HPMVEC) leading to barrier enhancement. In contrast, low molecular weight hyaluronan (LMW-HA), produced in disease states by hyaluronidases and reactive oxygen species (ROS), induces HPMVEC barrier disruption. However, the mechanism(s) of sustained barrier regulation by HA are poorly defined. Our results indicate that long-term (6–24 hours) exposure of HMW-HA induced release of a novel type of extracellular vesicle from HLMVEC called enlargeosomes (characterized by AHNAK expression) while LMW-HA long-term exposure promoted release of exosomes (characterized by CD9, CD63, and CD81 expression). These effects were blocked by inhibiting caveolin-enriched microdomain (CEM) formation. Further, inhibiting enlargeosome release by annexin II siRNA attenuated the sustained barrier enhancing effects of HMW-HA. Finally, exposure of isolated enlargeosomes to HPMVEC monolayers generated barrier enhancement while exosomes led to barrier disruption. Taken together, these results suggest that differential release of extracellular vesicles from CEM modulate the sustained HPMVEC barrier regulation by HMW-HA and LMW-HA. HMW-HA-induced specialized enlargeosomes can be a potential therapeutic strategy for diseases involving impaired vascular integrity

    Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice.

    Get PDF
    Chronic sleep fragmentation (SF) commonly occurs in human populations, and although it does not involve circadian shifts or sleep deprivation, it markedly alters feeding behaviors ultimately promoting obesity and insulin resistance. These symptoms are known to be related to the host gut microbiota. Mice were exposed to SF for 4 weeks and then allowed to recover for 2 weeks. Taxonomic profiles of fecal microbiota were obtained prospectively, and conventionalization experiments were performed in germ-free mice. Adipose tissue insulin sensitivity and inflammation, as well as circulating measures of inflammation, were assayed. Effect of fecal water on colonic epithelial permeability was also examined. Chronic SF-induced increased food intake and reversible gut microbiota changes characterized by the preferential growth of highly fermentative members of Lachnospiraceae and Ruminococcaceae and a decrease of Lactobacillaceae families. These lead to systemic and visceral white adipose tissue inflammation in addition to altered insulin sensitivity in mice, most likely via enhanced colonic epithelium barrier disruption. Conventionalization of germ-free mice with SF-derived microbiota confirmed these findings. Thus, SF-induced metabolic alterations may be mediated, in part, by concurrent changes in gut microbiota, thereby opening the way for gut microbiome-targeted therapeutics aimed at reducing the major end-organ morbidities of chronic SF

    Gram Negative Bacteria Are Associated with the Early Stages of Necrotizing Enterocolitis

    Get PDF
    Introduction: Necrotizing enterocolitis (NEC) affects 5–10 % of infants born weighing less than 1500 g. Most models of NEC recapitulate late-stage disease with gut necrosis and elevated inflammatory mediators. Evaluation of NEC at earlier, less lethal stages of disease will allow investigation of initial disease triggers and may advance our understanding of temporal relationships between factors implicated in NEC pathogenesis. In this manuscript, we describe our investigation of early NEC and test the hypothesis that bacteria and inflammatory mediators differ between animals with early NEC and disease fre

    Gut Microbial Gene Expression in Mother-Fed and Formula-Fed Piglets

    Get PDF
    Effects of diet on the structure and function of gut microbial communities in newborn infants are poorly understood. High-resolution molecular studies are needed to definitively ascertain whether gut microbial communities are distinct in milk-fed and formula-fed infants.Pyrosequencing-based whole transcriptome shotgun sequencing (RNA-seq) was used to evaluate community wide gut microbial gene expression in 21 day old neonatal piglets fed either with sow's milk (mother fed, MF; n = 4) or with artificial formula (formula fed, FF; n = 4). Microbial DNA and RNA were harvested from cecal contents for each animal. cDNA libraries and 16S rDNA amplicons were sequenced on the Roche 454 GS-FLX Titanium system. Communities were similar at the level of phylum but were dissimilar at the level of genus; Prevotella was the dominant genus within MF samples and Bacteroides was most abundant within FF samples. Screened cDNA sequences were assigned functional annotations by the MG-RAST annotation pipeline and based upon best-BLASTX-hits to the NCBI COG database. Patterns of gene expression were very similar in MF and FF animals. All samples were enriched with transcripts encoding enzymes for carbohydrate and protein metabolism, as well as proteins involved in stress response, binding to host epithelium, and lipopolysaccharide metabolism. Carbohydrate utilization transcripts were generally similar in both groups. The abundance of enzymes involved in several pathways related to amino acid metabolism (e.g., arginine metabolism) and oxidative stress response differed in MF and FF animals.Abundant transcripts identified in this study likely contribute to a core microbial metatranscriptome in the distal intestine. Although microbial community gene expression was generally similar in the cecal contents of MF and FF neonatal piglets, several differentially abundant gene clusters were identified. Further investigations of gut microbial gene expression will contribute to a better understanding of normal and abnormal enteric microbiology in animals and humans
    • …
    corecore