4 research outputs found

    Coherent Transport of Quantum States by Deep Reinforcement Learning

    Get PDF
    Some problems in physics can be handled only after a suitable \textit{ansatz }solution has been guessed. Such method is therefore resilient to generalization, resulting of limited scope. The coherent transport by adiabatic passage of a quantum state through an array of semiconductor quantum dots provides a par excellence example of such approach, where it is necessary to introduce its so called counter-intuitive control gate ansatz pulse sequence. Instead, deep reinforcement learning technique has proven to be able to solve very complex sequential decision-making problems involving competition between short-term and long-term rewards, despite a lack of prior knowledge. We show that in the above problem deep reinforcement learning discovers control sequences outperforming the \textit{ansatz} counter-intuitive sequence. Even more interesting, it discovers novel strategies when realistic disturbances affect the ideal system, with better speed and fidelity when energy detuning between the ground states of quantum dots or dephasing are added to the master equation, also mitigating the effects of losses. This method enables online update of realistic systems as the policy convergence is boosted by exploiting the prior knowledge when available. Deep reinforcement learning proves effective to control dynamics of quantum states, and more generally it applies whenever an ansatz solution is unknown or insufficient to effectively treat the problem.Comment: 5 figure

    Deep Reinforcement Learning for Quantum State Preparation with Weak Nonlinear Measurements

    Get PDF
    International audienceQuantum control has been of increasing interest in recent years, e.g. for tasks like state initialization and stabilization. Feedback-based strategies are particularly powerful, but also hard to find, due to the exponentially increased search space. Deep reinforcement learning holds great promise in this regard. It may provide new answers to difficult questions, such as whether nonlinear measurements can compensate for linear, constrained control. Here we show that reinforcement learning can successfully discover such feedback strategies, without prior knowledge. We illustrate this for state preparation in a cavity subject to quantum-non-demolition detection of photon number, with a simple linear drive as control. Fock states can be produced and stabilized at very high fidelity. It is even possible to reach superposition states, provided the measurement rates for different Fock states can be controlled as well

    Reinforcement Learning Based Control of Coherent Transport by Adiabatic Passage of Spin Qubits

    No full text
    Several tasks involving the determination of the time evolution of a system of solid state qubits require stochastic methods in order to identify the best sequence of gates and the time of interaction among the qubits. The major success of deep learning in several scientific disciplines has suggested its application to quantum information as well. Thanks to its capability to identify best strategy in those problems involving a competition between the short term and the long term rewards, reinforcement learning (RL) method has been successfully applied, for instance, to discover sequences of quantum gate operations minimizing the information loss. In order to extend the application of RL to the transfer of quantum information, we focus on Coherent Transport by Adiabatic Passage (CTAP) on a chain of three semiconductor quantum dots (QD). This task is usually performed by the so called counter-intuitive sequence of gate pulses. Such sequence is capable of coherently transfer an electronic population from the first to the last site of an odd chain of QDs, by leaving the central QD unpopulated. We apply a technique to find nearly optimal gate pulse sequence without explicitly give any prior knowledge of the underlying physical system to the RL agent. Using the advantage actor-critic algorithm, with a small neural net as function approximator, we trained a RL agent to choose the best action at every time step of the physical evolution to achieve the same results previously found only by ansatz solutions
    corecore