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Coherent transport of quantum states by deep
reinforcement learning
Riccardo Porotti1,2,5, Dario Tamascelli 3, Marcello Restelli4 & Enrico Prati1

Some problems in physics can be handled only after a suitable ansatz solution has been

guessed, proving to be resilient to generalization. The coherent transport of a quantum state

by adiabatic passage through an array of semiconductor quantum dots is an excellent

example of such a problem, where it is necessary to introduce a so-called counterintuitive

control sequence. Instead, the deep reinforcement learning (DRL) technique has proven to be

able to solve very complex sequential decision-making problems, despite a lack of prior

knowledge. We show that DRL discovers a control sequence that outperforms the coun-

terintuitive control sequence. DRL can even discover novel strategies when realistic dis-

turbances affect an ideal system, such as detuning or when dephasing or losses are added to

the master equation. DRL is effective in controlling the dynamics of quantum states and,

more generally, whenever an ansatz solution is unknown or insufficient to effectively treat the

problem.
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Some problems in physics are solved as a result of the dis-
covery of an ansatz solution, namely a successful test guess,
but unfortunately there is no general method to generate

one. Recently, machine learning has increasingly proved to be a
viable tool for modeling hidden features and effective rules in
complex systems. Among the classes of machine learning algo-
rithms, deep reinforcement learning (DRL)1 is providing some of
the most spectacular results due to its ability to identify strategies
for achieving a goal in a complex space of solutions without prior
knowledge of the system2–7. Contrary to supervised learning,
which has already been applied to quantum systems, such as in
the determination of high-fidelity gates and the optimization of
quantum memories by dynamic decoupling8, DRL has only very
recently been proposed for the control of quantum systems9–16,
along with a strictly quantum reinforcement learning
implementation14,17. To show the power of DRL, we apply DRL
to the problem of coherent transport by adiabatic passage
(CTAP) where an electron (encoding the quantum state) is
transferred through an array of quantum dots. The ansatz solu-
tion for CTAP is notoriously called counterintuitive because of its
nonobvious barrier control gate pulse sequence. During coherent
adiabatic passage, an electron spends ideally no time in the
central quantum dot, because of the simultaneous modulation of
the coupling between the dots that suitably drives the trajectory
through the Hilbert space18–22. The system moves from an initial
equilibrium condition to a different one, namely the one where
only the last dot of the array is populated. By exploiting such an
ansatz solution, consisting of applying the barrier control gates
between the dots in a “reversed order” with respect to what
intuition would naturally suggest, the process displays truly
quantum mechanical behavior, provided that the array consists of
an odd number of dots. Researchers have already explored
silicon-based quantum information processing architectures23–25,
including the coherent transport of multiple-spin qubits into
double quantum dots by adiabatic passage22, heuristic search
methods, such as genetic algorithms, to find a universal set of
quantum logic gates26,27, and the application of DRL to classical
systems28–30.

Here, we demonstrate that DRL implemented in a compact
neural network can, first of all, autonomously discover an analog
of the counterintuitive gate pulse sequence without any prior
knowledge, therefore finding a control path in a problem whose
solution is far from the equilibrium of the initial conditions. More
importantly, this method can outperform the previously intro-
duced analytical solutions in terms of processing speed and when
the system deviates from ideal conditions, which are here
represented by the imperfect tuning of the ground states of the
quantum dots, dephasing and losses. Under such conditions, no
analytical approach exists to the best of our knowledge. In our
approach, we exploit trust region policy optimization (TRPO)31

to handle the CTAP problem. First, we compare the results dis-
covered by the artificial intelligence algorithm with the ansatz
solution given in the literature. Next, we apply the method to
solve the system when the ground states of the quantum dots are
detuned and when the system is perturbed by an interaction with
uncontrollable degrees of freedom of the surrounding environ-
ment. This latter condition results in dephasing and loss terms in
the master equation describing the system, for which there exists
no analytical method. Similar to the case of artificial intelligence
learning in the classical Atari framework2, in our approach, the
DRL agent interacts with a QuTIP32 simulation, which plays the
role of the RL environment, by implementing the master equation
of the system. The RL agent exploits the information retrieved
from the feedback in terms of the temporal evolution of the
population of the dots. As a further advantage of such an
approach, a 2-step temporal Bayesian network (2TBN) analysis

can identify which parameters of the system influence the process
to a greater extent.

Results
Deep reinforcement learning by actor-critic neural networks.
Reinforcement learning (RL) is a set of techniques used to learn
behavior in sequential decision-making problems when no prior
knowledge about the system dynamics is available or when the
control problem is too complex for classical optimal-control
algorithms. RL methods can be roughly classified into three main
categories: value-based, policy-based, and actor-critic methods1.
Recently, actor-critic methods have proven to be successful in
solving complex continuous control problems33.

The idea behind actor-critic methods is to use two parametric
models (e.g., neural networks) to represent both the policy (actor)
and the value function (critic). The actor decides in each state of
the system which action to execute, while the critic learns the
value (utility) of taking each action in each state (see
Supplementary Note 1). Following the critic’s advice, the actor
modifies the parameters of its policy to improve the performance.
Among the many actor-critic methods available in the literature,
we selected the TRPO algorithm31 (Supplementary Note 2) to
find an optimal policy of control pulses. The choice of TRPO is
motivated both by its excellent performance on a wide variety of
tasks and by the relative simplicity of tuning its hyperpara-
meters31 (see the Supplementary Note 3).

Coherent spatial adiabatic passage of qubits. CTAP is the solid-
state version of a method developed for stimulated Raman
adiabatic passage21,34, which is relevant for instance in quantum
information processing architectures that shuttle a qubit from one
location to another, where attention is paid to minimize the
information loss during transport. In solid-state quantum devices
based on either silicon35 or gallium arsenide36, the qubit can be
encoded, for instance, into spin states of either excess electron(s)
or hole(s) in quantum dots24. CTAP was originally developed for
single-electron states in single-occupied quantum dots, but it can
be also extended to more complex spin states, such as hybrid
qubits based on spin triplets22. If one imagines employing, for
instance, an array of dopants in silicon37–39, a reasonable inter-
dopant spacing is of the order of 20 nm, and a hopping time of
100 ps40 can be achieved. Adiabatic passage requires control
pulses with a bandwidth and order of magnitude or two lower
than the hopping time, which can be managed by conventional
electronics41.

Steering a quantum system initially far from the final equili-
brium. To demonstrate the exploitation of RL, we start by the
simplest case of CTAP across a chain of three identical quantum
dots. The RL architecture is depicted in Fig. 1a. The simulation of
the physical system that supports CTAP consists of an RL
environment E that receives as input the updated values of the
parameters (in our case the control sequence Ωi,i+ 1 with i= 1, 2
between the adjacent ith and (i+ 1)th dots) that reflect the action
of the control gates as calculated by the agent A according to the
policy π. In turn, the RL environment E computes the new RL
state (here expressed in terms of the density matrix of the triple
quantum dot device, see Supplementary Fig. 1) and provides
feedback to agent A. Agent A calculates the next input parameters
after evaluating the effects of the previous input according to a
reward function rt, which is expressed in terms of the system
state. It is worth noting that the definition of an RL environment
(a black box that receives an action as input and outputs a result)
is very different from the usual definition of a physical environ-
ment, which corresponds to an external quantum system that
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interacts with the quantum system under investigation. More
explicitly, the ground state of each quantum dot is tuned with
respect to the others by external top metal gates (not shown for
simplicity in the sketch of the RL environment E in Fig. 1a), while
the coupling between two neighboring quantum dots is in turn
controlled by additional barrier control gates. The idealized
physical system is prepared so that the ground states of the three
quantum dots have the same energy. As the reference energy is
arbitrary, without loss of generality we can set E1= E2= E3= 0.
The Hamiltonian therefore reads:

HðtÞ ¼
0 �Ω12ðtÞ 0

�Ω12ðtÞ 0 �Ω23ðtÞ
0 �Ω23ðtÞ 0

0
B@

1
CA: ð1Þ

One of the three eigenstates is referred as a “dark state”, and it is
expressed as a function of the state of the first and third dots only.
The dark state reads:

D0ðtÞj i ¼ cos θ1ðtÞ 1j i � sin θ1ðtÞ 3j i; ð2Þ
where θ1(t)= arctan(Ω12(t)/Ω23(t)). A suitable time evolution of
the values of the control sequence Ω12(t) and Ω23(t) between the
dots allows to transform |D0(t)〉 from |1〉 at t= 0 to the final
target state |3〉 at t= tmax. If the Hamiltonian is prepared in |D0〉
at t= 0, by choosing θ1(t)= 0 (so that |D0(0)〉= |1〉), it will
remain in the same eigenstate if the adiabaticity criterion is met;
that is, E0 � E± ðtÞj j � _D0ðtÞjD± ðtÞ

� ��� ��, where the |D±(t)〉
eigenstates are explicitly given in the Supplementary Note 4, and
E±(t) are the corresponding eigenenergies. The effectiveness of the
pulse sequence of the barrier control gate, which is reflected in the
control sequence Ωi,i+ 1(t), is addressed by taking F(t)= ρ33(t) as
the fidelity and maximizing it while trying to keep the population
ρ22(t) constant at zero, where ρij, i, j∈ {1, 2, 3} represents an
element of the density matrix ρ. The time evolution is governed

by the von Neumann equation for the density matrix ρ, namely:

_ρ ¼ � i
�h
½H; ρ�: ð3Þ

Notoriously, a suitable shaping of Ω12(t) and Ω23(t) as Gaussian
pulses can achieve coherent transport with a high fidelity, if
tmax ≳ 10π

Ωmax
(see Supplementary Note 4 and Supplementary

Figs. 2–5). The two pulses must be applied in a so-called coun-
terintuitive sequence, meaning that the first gate controlling
Ω12(t) is operated after Ω23(t). Such pulse sequence drives the
occupation of the first dot ρ11(tmax) to zero and the occupation of
the last dot ρ33(t) to 1, while maintaining empty occupation of the
central dot (ρ22(t)= 0 ∀t∈ [0, tmax])18. It is worth mentioning
that recently a different ansatz combination of pulse shapes was
proposed to speed up this process42, using the so-called shortcut
to adiabaticity protocol43. Generally speaking, there is no analy-
tical method to optimize the pulses, so further improvements will
be based on still undiscovered ideas. Here is where the power of
DRL comes into play.

Deep reinforcement learning setup. The time evolution of the
physical system can be mapped into a Markov decision process
(MDP). An MDP is defined by a state space S, an action space A,
a probability transition Pðstiþ1

jsti ; atiÞ (where stiþ ; stiþ1
2 S and

ati 2 A), and a reward function r that is generally defined in the
space S ´A, but in our case r : S ! R. We define the discretized
time step ti= iΔt, where i= {0, 1, … N} and Δt ¼ tmax

N , such that
tN= tmax. It is noteworthy to clarify that, albeit the name is the
same, the definition of the RL state sti differs from that of a
quantum state. In this work, sti is defined as:

sti ¼ jρnmðtiÞj form; n 2 f1; 2; 3g; Ω12ðti�1Þ;Ω23ðti�1Þ
� � ð4Þ

such that the state at each time step contains the instantaneous
absolute values of the nine entries of the density matrix and both
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Fig. 1 The deep reinforcement learning architecture to control the coherent transport by adiabatic passage. a The deep reinforcement learning (DRL)
environment E can be represented by a linear array of quantum dots, with tunneling rates controlled by two gates indicated by Ω12 and Ω23. At each time
step, the DRL environment can be modeled by a 3 × 3 density matrix that is employed as an input observation (the state) by agent A. In turn, agent A uses
the observation to choose the action in the next time step by following a policy πðati jsti Þ. This action brings E to a new state ρtiþ1

¼ ρðtþ ΔtÞ. Each action is
punished or rewarded with a real-valued reward, indicated by rt. b Agent A is represented with a four-layer neural network, which acts as the policy π. At
each time step, the network receives the 3 × 3= 9 real values associated with the absolute values of the elements of the density matrix ρ and the two
values of the gate-control pulses Ω12 and Ω23, for a total of 11 neurons in the input layer. Then, the agent computes the policy π and outputs the values of
the two pulses that will be applied to barrier control gates in the next time step (b, lower right). The starting and ending points of the highlighted segments
can be connected by different functions of time such as the moving average or a spline function to smooth the step function generated by the discrete time
steps. Finally, the physical simulation of the quantum dot array brings the system to a new state by updating the density matrix accordingly and returns rt to
the agent. At t= tmax, the system reaches the final step (k= N), and the simulation ends
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Ωij values evaluated at the previous time step. Instead, ati is
defined as:

ati ¼ Ω12ðtiÞ;Ω23ðtiÞ½ � ð5Þ
such that ati 2 ½0;Ωmax� ´ ½0;Ωmax�. Due to the robust definition
of the reward function that allows the agent to judge its perfor-
mance, the neural network evolves in order to obtain the best
temporal evolution of the coupling parameters Ωi,i+ 1, ensuring
that the electron population reaches the target state over time
(Fig. 1b). The definition of the best reward function is certainly
the most delicate choice in the whole model. The key features of
the reward can be summarized by two properties: its generality
and its expression as a function of the desired final state. Gen-
erality means that the reward should not contain specific infor-
mation on the characteristics of the two pulses. Regarding the
dependence on the desired final state, in our case the goal is to
maximize ρ33 at the end of the time evolution. The structure of
the reward function used in the simulations is:

rti ¼ ð�1þ ρ33 tið Þ � ρ22 tið ÞÞ þ AðtiÞδi;N � BðtiÞ; ð6Þ
where A(ti) and B(ti) are the goal-reaching and punishment
terms, respectively. We found that the following combinations of
A(ti) and B(ti) work well:

AðtiÞ ¼
1000 ρ33ðtiÞ > ρth33
0 elsewhere

(
;

BðtiÞ ¼
100Θðρ22ðtiÞ � 0:05Þ Standard CTAP

e6ρ22ðtiÞ With detuning, dephasing and loss

� ð7Þ

The reward functions used in this research are fully accounted for
in the Supplementary Note 5. The sum of the first three terms is
nonpositive at each time step, so the agent will try to bring the
sum to 0 by minimizing ρ22 and maximizing ρ33. We have
observed that subtracting B(t) (e.g., punishing the electronic
occupation in site 2) and awarding the attainment of the goal with
the term A(t) improves the convergence of the learning. Fur-
thermore, in some specific cases, we stop the agent at an inter-
mediate episode if ρ33 is greater than an arbitrary threshold ρth33
for a certain number of time steps. This choice can help find fast
pulses that achieve high-fidelity quantum information transport
at the cost of a higher ρmax

22 with respect to the analytic pulses
(more details are given in the Supplementary Note 5).

Training of the agent. Figure 2 shows the best results achieved by
the agent at various epochs. The agent is free of spanning the
whole coupling range at each step. After the training, we smooth
the output pulses Ωi,i+ 1, and we run the simulation using the
smoothed values, obtaining a slight improvement from the cal-
culation using the original output values of the RL agent.
Smoothing is achieved with a moving average of the pulses (more
details in the Supplementary Note 6, Supplementary Fig. 6, and
Supplementary Table 1). The three occupations ρii, i∈ {1, 2, 3}
shown in Fig. 2 refer to the smoothed pulse sequences. At the very
beginning, the untrained agent tries random values with appar-
ently low success, as the occupation oscillates between the first
and the last dot over time. It is worth noting that despite this
fluctuation, due to the reward function, the agent learns very
quickly after only 45 epochs to always keep the occupation of the
central dot below 0.5. After ~2000 epochs, the agent learns to
stabilize the occupations of the first and last dots, while main-
taining an empty occupation of the central dot. After approxi-
mately twice the time, a reversal of the populations of the first and
last dots happens, even if they do not yet achieve the extremal
values. Finally, after approximately four times the elapsed time,
the agent achieves high-fidelity CTAP. Despite the stochastic
nature of DRL, these epoch numbers remain consistent through

different trainings (see the Supplementary Fig. 7). Notice that the
pulse sequence is similar to the ansatz Gaussian counterintuitive
pulse sequence as the second gate acting on Ω23 is operated first,
but the shape of the two pulses is different. It is remarkable that
the reward function implicitly tries to achieve the result as quickly
as possible, resulting in a pulse sequence that is significantly faster
than the analytical Gaussian case and comparable to the recent
proposal of Ban et al.42. The relevant point is that the agent
achieves such results irrespective of the actual terms of the
Hamiltonian contributing to the master equation. Therefore, DRL
can be applied straightforwardly to more complex cases for which
there is no generalization of the ansatz solutions found for the
ideal case, which we address in the next section.

Deep reinforcement learning to overcome disturbances. We
turn now our attention to the behavior of our learning strategy
when applied to a nonideal scenario in which typical realistic
conditions of semiconductor quantum dots are considered, to be
compared with ideal transport (Fig. 3a). In particular, we discuss
the results produced by DRL when the array is affected by
detuning caused by energy differences in the ground states of the
dots, dephasing and losses (Fig. 3b–d). These three effects exist, to
different degrees, in any practical attempt to implement CTAP of
an electron spin in quantum dots. The first effect is typically due
to manufacturing defects44, while the last two effects emerge from
the interaction of the dots with the surrounding environment45,46

involving charge and spin fluctuations47,48 and magnetic field
noise49. Under such disturbances, neither analytical nor ansatz
solutions are available. On the other hand, the robustness and
generality of the RL approach can be exploited naturally since,
from the point of view of the algorithm, it does not differ from
the ideal case discussed above. Let us consider a system of N= 3
quantum dots with different energies Ei, i∈ {1, 2, 3}. We define
Δij= Ej− Ei, so that the Hamiltonian (1) can be written, without
loss of generality, as

HðtÞ ¼
0 �Ω12ðtÞ 0

�Ω12ðtÞ Δ12 �Ω23ðtÞ
0 �Ω23ðtÞ Δ13

0
B@

1
CA: ð8Þ

Figure 3c refers to the particular choice Δ12= Δ23= 0.15Ωmax (a
full 2D scan of both Δ12 and Δ13 and the relative pulses are shown
in the Supplementary Figs. 8 and 9, respectively). In this case,
DRL finds a solution that induces significantly faster transfer than
that obtained with standard counterintuitive Gaussian pulses.
Moreover, the latter solutions are not even able to achieve a
fidelity comparable to that of the ideal case. Such speed is a
typical feature of pulse sequences determined by DRL, satisfying
the criterion of adiabaticity (see Supplementary Figs. 10 and 11).
Besides the energy detuning between the quantum dots, in a real
implementation, the dots interact with the surrounding envir-
onment. Since the microscopic details of such an interaction are
unknown, its effects are taken into account through an effective
master equation. A master equation of the Lindblad type with
time-independent rates is adopted to grant sufficient generality
while keeping a simple expression. To show the ability of DRL to
mitigate disturbances, we consider, in particular, two major
environmental effects consisting of decoherence and losses. The
first environmental effect corresponds to a randomization of the
relative phases of the electron states in the quantum dots, which
results in a cancellation of the coherence terms, i.e., the off-
diagonal elements of the density matrix in the position basis. The
losses, instead, model the erasure of the quantum information
carried by the electron/hole moving along the dots. In fact, while
the carrier itself cannot be reabsorbed, the quantum information,
here encoded as a spin state, can be changed by the interaction
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with some surrounding spin or by the magnetic field noise. In the
presence of dephasing and losses, the system’s master equation is
of the Lindblad type. Its general form is

_ρ ¼ � i
�h
H; ρ½ � þ

X
n

Γn AnρA
y
n �

1
2

Ay
nAn; ρ

� 	
 �
; ð9Þ

where Ak are the Lindblad operators, Γk are the associated rates,
and {A, B}=AB+ BA denotes the anticommutator.

We first considered each single dot being affected by dephasing
and assumed an equal dephasing rate Γd for each dot. The master
equation can be rewritten as

_ρ ¼ � i
�h
H; ρ½ � þ Γd ρ� diagðρÞ½ �: ð10Þ

Figure 3c shows an example of the pulses determined by DRL
and the corresponding dynamics for the choice Γd= 0.01Ωmax.
CTAP is achieved with Gaussian pulses in a time t ≈ 10π/Ωmax at
the cost of a significant occupation of the central dot (inset). The
advantage brought by the DRL agent with respect to Gaussian
pulses is manifest: DRL (solid lines) realizes population transfer
in approximately half of the time required when analytic pulses
(dashed lines) are employed. The occupation of the central dot is
less than that achieved by Gaussian pulses. We now consider the
inclusion of a loss term in the master equation. The loss refers to
the information carried by the electron encoded by the spin.
While the loss of an electron is a very rare event in quantum dots,
requiring the sudden capture of a slow trap50–52, the presence of
any random magnetic field and spin fluctuation around the

quantum dots can modify the state of the transferred spin. Losses
are described by the operators Γl|0〉〈k|, k∈ {1, 2, 3}, where Γl is the
loss rate, modeling the transfer of the amplitude from the i-th dot
to an auxiliary vacuum state |0〉. Figure 3d shows the superior
performance of DRL versus analytic Gaussian pulses in terms of
the maximum value of ρ33 reached during the time evolution.
Because of the reward function, DRL minimizes the transfer time
so as to minimize the effect of losses. The explicit reward function
for each case is given in the Supplementary Table 2. As a further
generalization, we applied DRL to the passage through more than
one intervening dot, an extension called a straddling CTAP
scheme (or SCTAP)18,53. To exemplify a generalization to odd N
> 3, we set N= 5 according to the sketch depicted in Fig. 4, and
no disturbance was considered for simplicity (see the Supple-
mentary Note 7 for further details on SCTAP). For five-state
transfer, like the cases for three states and for any other odd
number of quantum dots, there is one state with zero energy (see
Supplementary Fig. 12). The realization of the straddling
tunneling sequence is achieved by augmenting the original pulse
sequence by straddling pulses, which are identical for all
intervening tunneling rates Ωm. The straddling pulse involves
the second and third control gates, as shown in Fig. 4a, b. The
pulse sequence discovered by DRL is significantly different from
the known sequence based on Gaussian pulses. It achieves
population transfer in approximately one third of the time with
only some occupation in the central dot (see Fig. 4c). It is
remarkable that the reward function (see the Supplementary
Note 5) achieves such a successful transfer without any
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Fig. 2 Learning of the agent for various training epochs. Vertical panels show the pulses Ω and the populations ρ accounted for by the diagonal elements of
the density matrix after 45 (a), 1824 (b), 4489 (c), and 16700 (d), respectively. Horizontal axis represents time, for which in this case tmax ¼ 10 π

Ωmax
is set.

Vertical axis shows the pulse intensity Ω and the diagonal elements of the density matrix ρ. Each time evolution has been divided into N= 100 time steps.
In each time step ti, the neural network can choose the value of both interdot couplings between a pair of neighboring quantum dots, which range from 0 to
Ωmax, and they are assumed to be constant during each time step. In the top panel of all four epochs shown, the faded pulses are the outputs of the
reinforcement learning (RL) agent, while the highlighted lines are a moving average with a four-sized window. The bottom panels represent the time
evolution of the diagonal elements of the density matrix with such averaged pulses applied. We have empirically observed that using a moving average fit
achieves better results in terms of minimizing ρ22 and maximizing ρ33 (in this particular case, the maximum value of ρ22 is decreased to 4 × 10−4, and the
maximum value of ρ33 is increased to 5 × 10−4). Three different regimes can be observed: in the first regime, a the agent explores randomly. Later, b the
agent learns how to minimize the population of the second quantum dot. Finally, c the agent learns how to achieve a high population in site 3 at the end of
the evolution, without populating the second quantum dot (d)
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requirement for the occupation of the intermediate dots ρi,i with
(i∈ {2, 3, 4}) as it only rewards the occupation of the last dot.

Analysis of the relevant variables within the DRL framework.
The advantages of employing DRL with respect to an ansatz
solution is further increased by the possibility of determining the
factors that are more relevant for the effectiveness of the final
solution from the analysis of the neural network. In fact, the
employment of the DRL algorithm enables an analysis of the state
variables that are actually relevant for solving the control pro-
blems, like that discussed above. To select the variables needed to
solve an MDP, we follow the approach presented by Peters
et al.54–56. The idea is that a state variable is useful if it helps to
explain either the reward function or the dynamics of the state
variables that in turn are necessary to explain the reward func-
tion. Otherwise, the state variable is useless, and it can be dis-
carded without affecting the final solution. To represent the
dependencies between the variables of an MDP, we use a 2TBN57,

described in Supplementary Note 8. In the graph of Fig. 5, there
are three types of nodes: the gray diamond node represents the
reward function, the circle nodes represent state variables, and the
squares represent action variables. The nodes are arranged on
three vertical layers: the first layer on the left includes the vari-
ables at time ti, the second layer includes the state variables at
time ti+ 1, and the third layer includes the node that represents
the reward function. If a variable affects the value of another
variable, we obtain a direct edge that connects the former to the
latter. Figure 5 shows the 2TBN estimated from a dataset of
100,000 samples obtained from the standard case of ideal CTAP.
The weights are quantified in the Supplementary Table 3. As
expected from Eq. (6), the reward function depends only on the
values of the variables ρ22 and ρ33. From the 2TBN, it emerges
that the dynamics of these two state variables can be fully
explained by knowing their values at the previous step, the values
of the two action variables Ω12 and Ω23 and the actions taken in
the previous time step (stored in the variables Ω′

12 and Ω′
23). All
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Fig. 3 Comparison of coherent transport by adiabatic passage achieved by Gaussian pulses and deep reinforcement learning algorithm respectively under
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conditions with identical eigenvalues in the three quantum dots with tmax ¼ 12 π
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0.01Ωmax and tmax ¼ 5 π
Ωmax

. c Simulation for a detuned system, where Δ12=Δ23= 0.15Ωmax and tmax ¼ 5 π
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. d Simulation affected by loss, which is
accounted for by an effective term weighted by Γl= 0.1Ωmax and tmax ¼ 10 π

Ωmax
. The insets of b, c show simulations achieved with Gaussian pulses for

tmax ¼ 10 π
Ωmax

. The setups of the neural networks employed are, respectively, (16, 0), (128, 64), (64, 64), and (128, 64), where the first number in
parenthesis represents the number of neurons of the first hidden layer H1 of the network and the second number represents the number of neurons of the
second hidden layer H2
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other state variables do not appear and therefore can be ignored
for the computation of the optimal control policy. This finding
matches the expectation from the constraints of the physical
model that coherences are not directly involved in the dynamics
and that ρ11 is linearly dependent on ρ22 and ρ33 as the trace of
the density matrix is constant. To confirm this finding, the agent
was successfully trained in the standard case of ideal CTAP by
using only the input values (ρ22, ρ33, Ω12, and Ω23). Furthermore,
the size of the hidden layer H1 could be reduced in this case from
64 to 4 with the same convergence of the total reward as a
function of the episodes or an even faster convergence by redu-
cing the batch size from 20 to 10 (see the Supplementary Figs. 13
and 14). In the cases of detuning and dephasing, the corre-
sponding 2TBNs are more complex, since the dynamics of ρ22
and ρ33 are affected also by the values of the other elements of the
matrix ρ. This fact is also apparent in the changes carried by the
Hamiltonian, as the trace is not constant when losses are present
and dephasing has a direct effect on the coherence.

Discussion
Neural networks can discover control sequences for a tunable
quantum system whose time evolution starts far from its final
equilibrium, without any prior knowledge. Contrary to the
employment of special ansatz solutions, we have shown that
DRL discovers novel sequences of control operations to achieve
a target state, regardless of the possible deviations from the
ideal conditions. DRL is achieved irrespective of previously
discovered ansatz solutions, and it applies when such solutions
are unknown. The control sequence found by DRL can also
provide insights into novel analytical shapes for optimal pulses.
The use of a pretrained neural network as a starting point to
identify the solution of a master equation with similar para-
meters further reduces the computation time by one order of
magnitude (see Supplementary Note 9). Our investigation
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. The dashed-thick pulses are discovered by the DRL, while the solid lines are cubic spline

interpolations. c Population transfer by DRL-controlled SCTAP. On the x-axis there is the (rescaled) time in unity of tmax, while on the y-axis there is tmax.
During a time evolution, the increase/decrease of the electronic populations shows oscillations (Vitanov et al.34), which are reduced for some values of
tmax, e.g., tmax ¼ 21 π

Ωmax
. For tmax ¼ 21 π

Ωmax
, the maximum value of ρ33 is ρ33,max= 0.1946, while ρ55,max= 0.99963689, obtained with the fitted pulses.

Notice how ρ22, ρ33, and ρ44 are minimized during all the time evolution
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Fig. 5 Two-step temporal Bayesian network (2TBN) for ideal standard
coherent transport by adiabatic passage. The gray diamond node is used to
represent the reward function, the circles represent the state variables and
the squares represent the action variables. The nodes are arranged on three
vertical layers: the first layer on the left includes the variables at time ti, the
second layer includes the state variables at time ti+ 1, and the third layer
consists of the node that represents the reward function. The prime index
indicates the value of a variable as stored in the previous step. A direct edge
between two nodes means that the value of the source node influences the
value of the target node. The thicker the line, the greater the influence is. As
expected, ρ11 (shaded red) has no connections, as it is linearly dependent on
ρ22 and ρ33
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indicates that a key factor is the appropriate definition of the
reward function that deters the system from occupying the
central quantum dot and rewards the occupation of the last
quantum dot. To apply DRL to a practical quantum system
known for its counterintuitive nature, we have studied quantum
state transport across arrays of quantum dots, including sources
of disturbances such as energy level detuning, dephasing, and
loss. In all cases, the solutions found by the agent outperform
the known solution in terms of either speed or fidelity or both.
Both the pretraining of the network and 2TBN analysis—by
reducing the computational effort—contribute to accelerating
the learning process. In general, we have shown that neural-
network-based DRL provides a general tool for controlling
physical systems by circumventing the issue of finding ansatz
solutions when neither a straightforward method nor a brute
force approach is possible. A comparison with other control
strategies of quantum systems16,58,59 will be the objective of
future work. As a concluding remark, we observe that in this
work we have modeled the effects of the environment or noisy
control fields by master equations in the Lindblad form with
time-independent coefficients; by construction, the same DRL
strategy can be used to determine the optimal pulse sequence in
the presence of non-Markovian noise/effects originating from
an interaction of the system with structured environments. In
this case, an efficient way to compute the time evolution of the
open system, which is required to determine the value of
the pulses at each time step, is needed. Depending on the nature
(bosonic, fermionic) and features (spectral density) of the
environment, different approximate or numerically exact stra-
tegies ranging from Bloch-Redfield or time-convolutionless
master equations60 to path integrals61 or chain-mapping tech-
niques (reaction-coordinate62 or TEDOPA63,64) could be
exploited.

Methods
Master equation for the Hamiltonian including pure dephasing. Pure dephas-
ing65 is the simplest model that accounts for an environmental interaction of an
otherwise closed system. The corresponding Lindblad operators are diagonal and
have the form:

Ln ¼ ffiffiffiffiffi
γn

p
nj i nh j: ð11Þ

In the case of γ1= γ2= γ3= Γd, the master equation becomes:

_ρ ¼ � i
�h
H; ρ½ � þ Γd ρ� diagðρÞ½ �: ð12Þ

If the Hamiltonian is time-independent, then

d
dt

ρii ¼ 0 ð13Þ

for every i, so the electronic population remains unchanged in the presence of pure
dephasing. This implies66 that the energy of the system remains unchanged during
the evolution, since it cannot be changed by environment.

Neural network. The neural network consists of a multilayered feed-forward
network of (Ni, H1, [H2,]No) neurons, where Ni= 11; it includes the nine elements
of the density matrix ρ and the control sequence Ωij, No= 2 are the two updated
values of the control sequence spanning a continuous range between 0 and an
arbitrary value Ωmax chosen according to experimental considerations, and Hi the
number of neurons of the ith hidden layer.

Different setups for the neural network have been employed. Nonetheless, all
the neural networks are feedforward and fully connected, with an ReLU activation
function for the neurons. For the implementation of the neural networks and their
training, Tensorforce67 is employed. For the RL algorithm adopted for this work,
TRPO, the hyperparameters are set as summarized in the Supplementary Table 4.
The optimal number of neurons of the hidden layer peaks at ~25–26 (see the
Supplementary Fig. 15).

Software. The QuTIP routine has been run in parallel by using GNU Parallel68.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code and the algorithm used in this study are available from the corresponding
author upon reasonable request.
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