24 research outputs found

    Crop modelling: towards locally relevant and climate-informed adaptation

    No full text
    A gap between the potential and practical realisation of adaptation exists: adaptation strategies need to be both climate-informed and locally relevant to be viable. Place-based approaches study local and contemporary dynamics of the agricultural system, whereas climate impact modelling simulates climate-crop interactions across temporal and spatial scales. Crop-climate modelling and place-based research on adaptation were strategically reviewed and analysed to identify areas of commonality, differences, and potential learning opportunities to enhance the relevance of both disciplines through interdisciplinary approaches. Crop-modelling studies have projected a 7–15% mean yield change with adaptation compared to a non-adaptation baseline (Nature Climate Change 4:1–5, 2014). Of the 17 types of adaptation strategy identified in this study as place-based adaptations occurring within Central America, only five were represented in crop-climate modelling literature, and these were as follows: fertiliser, irrigation, change in planting date, change in cultivar and area cultivated. The breath and agency of real-life adaptation compared to its representation in modelling studies is a source of error in climate impact simulations. Conversely, adaptation research that omits assessment of future climate variability and impact does not enable to provide sustainable adaptation strategies to local communities so risk maladaptation. Integrated and participatory methods can identify and reduce these sources of uncertainty, for example, stakeholder’s engagement can identify locally relevant adaptation pathways. We propose a research agenda that uses methodological approaches from both the modelling and place-based approaches to work towards climate-informed locally relevant adaptation

    In silico analysis of phytohormone metabolism and communication pathways in citrus transcriptome

    Full text link

    Recent advances in rapid and sensitive screening for abiotic stress tolerance

    No full text
    Traditionally, screening for abiotic stress tolerance at field level was based on necrosis scores and shoot biomass reduction on stress exposure, relative to unstressed controls. However, such a measure of tolerance screening is laborious, destructive, and time consuming, and results are subjected to environmental variation. Recently, noninvasive, high-throughput screening techniques have been developed for screening abiotic stress tolerance in crops. In this direction, some physiological, biochemical, and/or molecular indicators/markers have been identified for rapid and sensitive indirect screening of germplasm. Physiological markers like membrane damage based on electrolyte leakage, stomatal conductance, chlorophyll content and so on are currently available. In addition, quick and sensitive screening in crop plants is possible with biochemical markers like status of reactive oxygen species and oxidative damage to biological macromolecules like lipids, proteins, and nucleic acids. Identification of molecular markers associated with the tolerance response has also made rapid and sensitive indirect selection possible in a few crop species. Thus, development of such methods is valuable in breeding for abiotic stress tolerance in plants
    corecore