166 research outputs found

    High Precision Astrometric Millimeter VLBI Using a New Method for Atmospheric Calibration

    Full text link
    We describe a new method which achieves high precision Very Long Baseline Interferometry (VLBI) astrometry in observations at millimeter wavelengths. It combines fast frequency-switching observations, to correct for the dominant non-dispersive tropospheric fluctuations, with slow source-switching observations, for the remaining ionospheric dispersive terms. We call this method Source-Frequency Phase Referencing. Provided that the switching cycles match the properties of the propagation media, one can recover the source astrometry. We present an analytic description of the two-step calibration strategy, along with an error analysis to characterize its performance. Also, we provide observational demonstrations of a successful application with observations using the Very Long Baseline Array at 86 GHz of the pairs of sources 3C274 & 3C273 and 1308+326 & 1308+328, under various conditions. We conclude that this method is widely applicable to millimeter VLBI observations of many target sources, and unique in providing bona-fide astrometrically registered images and high precision relative astrometric measurements in mm-VLBI using existing and newly built instruments.Comment: Astronomical Journal, accepted for publicatio

    Multi-step VLBI observations of weak extragalactic radio sources to align the ICRF and the future GAIA frame

    Full text link
    The space astrometry mission GAIA will construct a dense optical QSO-based celestial reference frame. For consistency between optical and radio positions, it will be important to align the GAIA frame and the International Celestial Reference Frame (ICRF) with the highest accuracy. Currently, it is found that only 10% of the ICRF sources are suitable to establish this link, either because they are not bright enough at optical wavelengths or because they have significant extended radio emission which precludes reaching the highest astrometric accuracy. In order to improve the situation, we have initiated a VLBI survey dedicated to finding additional suitable radio sources for aligning the two frames. The sample consists of about 450 sources, typically 20 times weaker than the current ICRF sources (down to the 20 mJy flux level), which have been selected by cross-correlating optical and radio catalogues. This paper presents the observing strategy to detect, image, and measure accurate positions for these sources. It will also provide results about the VLBI detectability of the sources, as derived from initial observations with the European VLBI Network in June and October 2007. Based on these observations, an excellent detection rate of 89% is found, which is very promising for the continuation of this project

    VLBI2010: The Astro-Geo Connection

    Get PDF
    VLBI2010 holds out promise for greatly increased precision in measuring geodetic and Earth rotation parameters. As a by-product there will be a wealth of interesting new astronomical data. At the same time, astronomical knowledge may be needed to disentangle the astronomical and geodetic contributions to the measured delays and phases. This presentation explores this astro-geo link

    VLBI observations of weak extragalactic radio sources for the alignment of the future GAIA frame with the ICRF

    Full text link
    The space astrometry mission GAIA will construct a dense optical QSO-based celestial reference frame. For consistency between the optical and radio positions, it will be important to align the GAIA frame and the International Celestial Reference Frame (ICRF) with the highest accuracy. Currently, it is found that only 10% of the ICRF sources are suitable to establish this link, either because they are not bright enough at optical wavelengths or because they have significant extended radio emission which precludes reaching the highest astrometric accuracy. In order to improve the situation, we have initiated a VLBI survey dedicated to finding additional high-quality radio sources for aligning the two frames. The sample consists of about 450 sources, typically 20 times weaker than the current ICRF sources, which have been selected by cross-correlating optical and radio catalogues. This paper presents the observing strategy and includes preliminary results of observation of 224 of these sources with the European VLBI Network in June 2007

    Optimum estimate of delays and dispersive effects in low-frequency interferometric observations

    Full text link
    Modern radio interferometers sensitive to low frequencies will make use of wide-band detectors. For such wide bandwidths, dispersive atmospheric effects introduce variations in the fringe delay which change through the band of the receivers. These undesired dispersive effects must be estimated and calibrated with the highest precision. We studied the achievable precision in the estimate of the ionospheric dispersion and the dynamic range of the correlated fringes for different distributions of sub-bands in low-frequency and wide-band interferometric observations. Our study is focused on the case of sub-bands with a bandwidth much narrower than that of the total covered spectrum (case of LOFAR). We computed the uncertainty of the ionospheric delay, the delay ambiguity, and the dynamic range of the fringes using four different kinds of sub-band distributions: constant spacing between sub-bands, random spacings, spacings based on a power-law distribution, and spacings based on Golomb rulers (sets of integers whose sets of differences have non-repeated elements). For a large number of sub-bands (>20> 20, depending on the delay window) spacings based on Golomb rulers give the most precise estimates of dispersive effects and the highest fringe dynamic ranges. Spacings based on the power-law distribution give similar results, although better than those with the Golomb rulers for smaller number of sub-bands. Random distributions result in large fringe dynamic ranges, but the estimate of dispersive effects is worse. A constant spacing of sub-bands results in very bad fringe dynamic ranges, but good estimates of ionospheric dispersion. Combining all the results, the power-law distribution gives the best compromise between homogeneity in the bandwidth sampling, precision in the estimate of ionospheric effects, dynamic range of the correlated fringes, and group-delay ambiguity.Comment: 8 pages, 7 figures. Accepted for publication in A&
    corecore