151 research outputs found

    Partial utilization efficiencies of protein and methionine by barramundi (Lates calcarifer) in response to dietary methionine source and form

    Get PDF
    An experiment was conducted with barramundi (Lates calcarifer) juveniles (initial weight 10.3 g ± 0.3 g) to examine the partial efficiency of utilization of methionine (Met) from intact protein (fishmeal or lupin protein concentrate) and a crystalline DL‐Met source. Fish were fed at one of three ration levels: Low (0.4 g/fish/day), Moderate (0.8 g/fish/day) and High (1.6 g/fish/day). Those fed the fishmeal‐based diet (Diet FML) at the highest ration level grew to an average weight of 37.3 ± 0.46 g, whereas those fed the Lupin Protein Concentrate (LPC)‐based diet fortified with all EAA (Diet LPCM) at the highest ration level grew to 25.4 ± 2.27 g. The weight of the fish fed the LPC diet with no additional Met (Diet LPC) even at the highest ration level declined over the course of the experiment resulting in a final weight of 9.2 ± 0.88 g, clearly demonstrating the impact of dietary Met deficiency. The partial efficiency of protein utilization was also significantly reduced when Met was limiting (a coefficient of 0.06, compared to 0.39 in the Met‐supplemented LPC diet). The results suggested that the partial efficiencies (coefficients) of both Met and protein utilization in diets where crystalline Met is the primary source of Met (Diet LPCM: 0.26 and 0.39 respectively) were significantly poorer than from an intact protein source (Diet FML: 0.89 and 0.67 respectively) when Met is provided in excess

    Postprandial plasma free amino acid profile and hepatic gene expression in juvenile barramundi (Lates calcarifer) is more responsive to feed consumption than to dietary methionine inclusion

    Get PDF
    The effects of dietary methionine (Met) supply on the postprandial pattern of plasma free amino acids and the differential expression of several genes associated with a number of sulfur amino acid and protein turnover pathways in the liver of juvenile barramundi (Lates calcarifer) was investigated. At the conclusion of a 49-day growth trial assessing the requirement for dietary Met, three treatments were selected (with deficient (DEF; 8.6 g kg−1), adequate (ADQ; 14.9 g kg−1) and excessive (EXC; 21.4 g kg−1)) levels of dietary Met, based on their respective growth responses. A peak occurred in plasma free Met at 2 h post-feeding in fish fed the DEF and ADQ diets and at 4 h post-feeding in fish in the EXC treatment. Liver samples collected at these timepoints, as well as those taken as a pre-feeding control, were analyzed for expression of genes involved in Met turnover (CGL, MAT-1, MAT-2a) and taurine biosynthetic pathways (CSAD, ADO, CDO), target of rapamycin inhibition (Redd-1), the somatotropic axis (GHR-II, IGFI, IGF-II) and protein turnover pathways (MUL-1, ZFAND-5). Markers of sulfur amino acid turnover were more significantly affected by time after feeding than by dietary Met level, suggesting production of these enzymes may be primarily regulated by the consumption of feed or protein, rather than by the dietary composition. Further, metabolised Met appeared likely to have been directed through S-Adenosylmethionine (SAM) dependent pathways, rather than converted to Cys, which may have contributed to the observed growth response. Both genes influencing the conversion of Met to SAM appear to be active at this lifestage in barramundi. Previously described markers of proteolytic pathways appear to be conserved in this species and we have confirmed that ZFAND-5 is a reliable biomarker of this process in barramundi. A number of important genes were investigated for the first time in this species and shown to be nutritionally regulated

    Comparison of equations to predict the metabolisable energy content as applied to the vertical strata and plant parts of forage sorghum (Sorghum bicolor)

    Get PDF
    Context: Nutritive values, particularly energy content of tropical forages, need to be accurately assessed so that rations can be more precisely formulated. Aims: The research aimed to collate and compare equations used to predict metabolisable energy content in forage sorghum (Sorghum bicolor (L.) Moench) to ascertain the effect of vertical strata on metabolisable energy content to assist in producing silage of defined quality. Methods: Twenty-four predictive metabolisable energy equations derived from international feeding standards were compared using forage sorghum samples grown under fertiliser and growth stage treatments. Samples were separated into leaf, stem and seed heads (where present) over four vertical strata. Key results: Equations based on digestibility with crude protein were robust in the prediction of metabolisable energy and had application to routine laboratory use. Conclusions: The current study suggests that predictions based on digestibility and crude protein content are best placed for metabolisable energy application. Such equations should be originally based on measured metabolisable energy content to establish a regression so as to be used for predictive purposes, and satisfy the biological requirement of in vivo and the laboratory measurement relationship with acceptable statistical error. Chemical composition relationships predicted different metabolisable energy contents. Implications: Improved accuracy of the prediction of metabolisable energy content in tropical forages will provide better application of production models and more accurate decisions in ration formulation

    Comparison of equations to predict the metabolisable energy content as applied to the vertical strata and plant parts of forage sorghum (Sorghum bicolor)

    Get PDF
    Context: Nutritive values, particularly energy content of tropical forages, need to be accurately assessed so that rations can be more precisely formulated. Aims: The research aimed to collate and compare equations used to predict metabolisable energy content in forage sorghum (Sorghum bicolor (L.) Moench) to ascertain the effect of vertical strata on metabolisable energy content to assist in producing silage of defined quality. Methods: Twenty-four predictive metabolisable energy equations derived from international feeding standards were compared using forage sorghum samples grown under fertiliser and growth stage treatments. Samples were separated into leaf, stem and seed heads (where present) over four vertical strata. Key results: Equations based on digestibility with crude protein were robust in the prediction of metabolisable energy and had application to routine laboratory use. Conclusions: The current study suggests that predictions based on digestibility and crude protein content are best placed for metabolisable energy application. Such equations should be originally based on measured metabolisable energy content to establish a regression so as to be used for predictive purposes, and satisfy the biological requirement of in vivo and the laboratory measurement relationship with acceptable statistical error. Chemical composition relationships predicted different metabolisable energy contents. Implications: Improved accuracy of the prediction of metabolisable energy content in tropical forages will provide better application of production models and more accurate decisions in ration formulation

    Adequate supply of dietary taurine stimulates expression of molecular markers of growth and protein turnover in juvenile barramundi (Lates calcarifer)

    Get PDF
    A trial was conducted to investigate the effect of dietary taurine (Tau) supply on the plasma amino acid composition and hepatic expression of several genes in juvenile barramundi (Lates calcarifer) after feeding. Triplicate tanks of fish (average weight, 89.3 g) were fed diets containing either a deficient (1 g kg−1), adequate (8 g kg−1) or excessive (19 g kg−1) level of dietary Tau. Liver tissues collected before feeding, and at 2- and 4-h post-feeding, were analysed for expression of genes involved in pathways of sulphur amino acid turnover, Tau biosynthesis and transport, target of rapamycin (TOR) signalling, the somatotropic axis and protein turnover. The treatment had no significant effect on the profiles of any amino acid in plasma collected over time after feeding, other than Tau and glycine. The expression profile of cystine and Tau synthetic genes suggested an effect of Tau excess on the metabolism of cystine. Markers of two pathways of Tau biosynthesis appear to be active in this species, providing proof that this species possesses the ability to synthesise Tau from SAA precursors. A marker for the regulation of Tau transport and homeostasis was shown to be directly regulated by Tau availability, whilst a link between adequate supply of Tau and TOR pathway-mediated growth stimulation was also apparent. An observed depression in expression of genes of the somatotropic axis, coupled with upregulation of the proteolytic and TOR-suppressing genes, in response to excessive Tau supply in the diet, signalled that excessive Tau may not be conducive to optimal growth in this species

    Psychological Outcomes following a nurse-led Preventative Psychological Intervention for critically ill patients (POPPI): protocol for a cluster-randomised clinical trial of a complex intervention

    Get PDF
    Introduction Acute psychological stress, as well as unusual experiences including hallucinations and delusions, are common in critical care unit patients and have been linked to post-critical care psychological morbidity such as post-traumatic stress disorder (PTSD), depression and anxiety. Little high-quality research has been conducted to evaluate psychological interventions that could alleviate longer-term psychological morbidity in the critical care unit setting. Our research team developed and piloted a nurse-led psychological intervention, aimed at reducing patient-reported PTSD symptom severity and other adverse psychological outcomes at 6 months, for evaluation in the POPPI trial.Methods and analysis This is a multicentre, parallel group, cluster-randomised clinical trial with a staggered roll-out of the intervention. The trial is being carried out at 24 (12 intervention, 12 control) NHS adult, general, critical care units in the UK and is evaluating the clinical effectiveness and cost-effectiveness of a nurse-led preventative psychological intervention in reducing patient-reported PTSD symptom severity and other psychological morbidity at 6 months. All sites deliver usual care for 5 months (baseline period). Intervention group sites are then trained to carry out the POPPI intervention, and transition to delivering the intervention for the rest of the recruitment period. Control group sites deliver usual care for the duration of the recruitment period. The trial also includes a process evaluation conducted independently of the trial team.Ethics and dissemination This protocol was reviewed and approved by the National Research Ethics Service South Central - Oxford B Research Ethics Committee (reference: 15/SC/0287). The first patient was recruited in September 2015 and results will be disseminated in 2018. The results will be presented at national and international conferences and published in peer reviewed medical journals.Trial registration number ISRCTN53448131; Pre-results

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ\sigma (5σ\sigma) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ\sigma level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Get PDF
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of ÎŽCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Full text link
    Measurements of electrons from Îœe\nu_e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Comment: 19 pages, 10 figure
    • 

    corecore