3,143 research outputs found

    Revisiting knowledge transfer for training object class detectors

    Full text link
    We propose to revisit knowledge transfer for training object detectors on target classes from weakly supervised training images, helped by a set of source classes with bounding-box annotations. We present a unified knowledge transfer framework based on training a single neural network multi-class object detector over all source classes, organized in a semantic hierarchy. This generates proposals with scores at multiple levels in the hierarchy, which we use to explore knowledge transfer over a broad range of generality, ranging from class-specific (bicycle to motorbike) to class-generic (objectness to any class). Experiments on the 200 object classes in the ILSVRC 2013 detection dataset show that our technique: (1) leads to much better performance on the target classes (70.3% CorLoc, 36.9% mAP) than a weakly supervised baseline which uses manually engineered objectness [11] (50.5% CorLoc, 25.4% mAP). (2) delivers target object detectors reaching 80% of the mAP of their fully supervised counterparts. (3) outperforms the best reported transfer learning results on this dataset (+41% CorLoc and +3% mAP over [18, 46], +16.2% mAP over [32]). Moreover, we also carry out several across-dataset knowledge transfer experiments [27, 24, 35] and find that (4) our technique outperforms the weakly supervised baseline in all dataset pairs by 1.5x-1.9x, establishing its general applicability.Comment: CVPR 1

    Object partitioning considered harmful : space subdivision for BVHs

    Get PDF
    A major factor for the efficiency of ray tracing is the use of good acceleration structures. Recently, bounding volume hierarchies (BVHs) have become the preferred acceleration structures, due to their competitive performance and greater flexibility compared to KD trees. In this paper, we present a study on algorithms for the construction of optimal BVHs. Due to the exponential nature of the problem, constructing optimal BVHs for ray tracing remains an open topic. By exploiting the linearity of the surface area heuristic (SAH), we develop an algorithm that can find optimal partitions in polynomial time. We further generalize this algorithm and show that every SAH-based KD tree or BVH construction algorithm is a special case of the generic algorithm. Based on a number of experiments with the generic algorithm, we conclude that the assumption of non-terminating rays in the surface area cost model becomes a major obstacle for using the full potential of BVHs. We also observe that enforcing space subdivision helps to improve BVH performance. Finally, we develop a simple space partitioning algorithm for building efficient BVHs

    Bose-Glass Phases in Disordered Quantum Magnets

    Full text link
    In disordered spin systems with antiferromagnetic Heisenberg exchange, transitions into and out of a magnetic-field-induced ordered phase pass through a unique regime. Using quantum Monte Carlo simulations to study the zero-temperature behavior, these intermediate regions are determined to be a Bose-Glass phase. The localization of field-induced triplons causes a finite compressibility and hence glassiness in the disordered phase.Comment: 4 pages, 4 figure

    Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings

    No full text
    International audienceThe propagation of a plasmon surface wave in deep metallic lamellar gratings is shown to be characterized by absorption losses smaller than on a flat metallic-dielectric interface. This feature is due to the formation of a resonance of the electric field inside the groove. Similar to the plasmon surface wave in shallow gratings, this kind of plasmon can lead to total absorption of incident light and to a significant enhancement of the local field density in the vicinity of the grating surface, contrary to the other type of grating anomaly linked with a cavity resonanc

    Non-Bloch plasmonic stop-band in real-metal gratings

    No full text
    International audienceRecent studies of plasmon surface wave (PSW) propagation in short-period perfectly conducting gratings have shown formation of stop-band that are not linked to the interaction between two ( counter) propagating surface waves. We study the properties of this stop-band in real metals. While for both perfectly conducting and real metals the propagation constant of PSW grows with the groove height, the stop-band in real metals appears for groove heights significantly smaller than in perfect metals. A physical explanation of the formation of the stop-band is proposed both by using a homogenisation of the corrugated layer and by analysis of the tangential electric field component

    Nonlinear electrostatic effects in MEMS ring-based rate sensors under shock excitation

    Get PDF
    The vibration response of a capacitive ring-based Coriolis Vibrating Gyroscope (CVG) subjected to in-plane shock is modelled and analysed to quantify the effect of shock on angular velocity measurement. The model developed considers a ring resonator with 8 uniformly spaced support legs and describes the in-plane ring response as the sum of the first 3 modes of a perfect ring and the nonlinear electrostatic force as a Taylor series. When a severe in-plane shock is applied, the rigid body response of the ring reduces the electrode gap significantly and a high order expansion is needed to represent the electrostatic force. These nonlinear forces are shown to cause direct and mixed mode coupling to occur, which can significantly modify the response characteristics. Numerical results are presented and interpreted for a range of shock cases to demonstrate the importance of mode coupling, and estimates are made to quantify the angular rate measurement error caused by shock for devices based on 2θ- and 3θ-modes of operation. To aid the design of devices that are more resilient to shock, a parameter study is performed to identify the modal frequency ratios that minimise this coupling

    Algorithms and data structures for interactive ray tracing on commodity hardware

    Get PDF
    Rendering methods based on ray tracing provide high image realism, but have been historically regarded as offline only. This has changed in the past decade, due to significant advances in the construction and traversal performance of acceleration structures and the efficient use of data-parallel processing. Today, all major graphics companies offer real-time ray tracing solutions. The following work has contributed to this development with some key insights. We first address the limited support of dynamic scenes in previous work, by proposing two new parallel-friendly construction algorithms for KD-trees and BVHs. By approximating the cost function, we accelerate construction by up to an order of magnitude (especially for BVHs), at the expense of only tiny degradation to traversal performance. For the static portions of the scene, we also address the topic of creating the “perfect” acceleration structure. We develop a polynomial time non-greedy BVH construction algorithm. We then modify it to produce a new type of acceleration structure that inherits both the high performance of KD-trees and the small size of BVHs. Finally, we focus on bringing real-time ray tracing to commodity desktop computers. We develop several new KD-tree and BVH traversal algorithms specifically tailored for the GPU. With them, we show for the first time that GPU ray tracing is indeed feasible, and it can outperform CPU ray tracing by almost an order of magnitude, even on large CAD models.Ray-Tracing basierte Bildsynthese-Verfahren bieten einen hohen Grad an Realismus, wurden allerdings in der Vergangenheit ausschließlich als nicht echtzeitfähig betrachtet. Dies hat sich innerhalb des letzten Jahrzehnts geändert durch signifikante Fortschritte sowohl im Bereich der Erstellung und Traversierung von Beschleunigungs-Strukturen, als auch im effizienten Einsatz paralleler Berechnung. Heute bieten alle großen Grafik-Firmen Echtzeit-Ray-Tracing Lösungen an. Die vorliegende Dissertation behandelt Beträge zu dieser Entwicklung in mehreren Kernaspekten. Der erste Teil beschäftigt sich mit der eingeschränkten Unterstützung von dynamischen Szenen in bisherigen Verfahren. Hierbei behandeln wir zwei zur Parallelisierung geeignete Algorithmen zur Erstellung von KD-Bäumen und Bounding-Volume-Hierarchien. Durch Approximation von Kosten-Funktionen kann eine Verbesserung der Konstruktionszeit von bis zu einer Größenordnung erreicht werden (speziell für BVH-Strukturen), bei nur geringem Verlust von Traversierungs-Effizienz. Mit Blick auf den statischen Teil einer Szene beschäftigen wir uns mit der Erstellung “perfekter” Beschleunigungs-Strukturen. Wir entwickeln einen Algorithmus zur BVH-Erstellung, der ein globales Optimum in polynomialer Zeit liefert. Dies führt zu einer neuartigen Beschleunigungs-Struktur, welche sowohl die hohe Leistung von KD-Bäumen, als auch den geringen Platzbedarf von BVH-Strukturen in sich vereinigt. Abschließend betrachten wir Echtzeit-Ray-Tracing auf Desktop-Computern. Wir entwickeln neuartige KD-Baum- und BVH-Traversierungs-Algorithmen, die speziell auf den Einsatz von Grafikprozessoren zugeschnitten sind. Wir zeigen damit zum ersten Mal, dass GPU-Ray-Tracing nicht nur praktikabel ist, sondern auch mehr als eine Größenordnung effizienter sein kann als CPU basierte Ray-Tracing-Verfahren, selbst bei der Darstellung großer CAD Modelle
    • …
    corecore