13,947 research outputs found

    Finite Element Solution of Axisymmetrical Dynamic Problems of Shells of Revolution

    Get PDF
    Finite element solution for natural frequencies and mode shapes of free axisymmetrical vibrations and dynamic response of arbitrary rotationally symmetric shell

    Vortex mass in a superfluid at low frequencies

    Full text link
    An inertial mass of a vortex can be calculated by driving it round in a circle with a steadily revolving pinning potential. We show that in the low frequency limit this gives precisely the same formula that was used by Baym and Chandler, but find that the result is not unique and depends on the force field used to cause the acceleration. We apply this method to the Gross-Pitaevskii model, and derive a simple formula for the vortex mass. We study both the long range and short range properties of the solution. We agree with earlier results that the non-zero compressibility leads to a divergent mass. From the short-range behavior of the solution we find that the mass is sensitive to the form of the pinning potential, and diverges logarithmically when the radius of this potential tends to zero.Comment: 4 page

    Bloch oscillations in one-dimensional spinor gas

    Full text link
    A force applied to a spin-flipped particle in a one-dimensional spinor gas may lead to Bloch oscillations of particle's position and velocity. The existence of Bloch oscillations crucially depends on the viscous friction force exerted by the rest of the gas on the spin excitation. We evaluate the friction in terms of the quantum fluid parameters. In particular, we show that the friction is absent for integrable cases, such as SU(2) symmetric gas of bosons or fermions. For small deviations from the exact integrability the friction is very weak, opening the possibility to observe Bloch oscillations.Comment: 4 pages, 2 figure

    A Gapless Theory of Bose-Einstein Condensation in Dilute Gases at Finite Temperature

    Full text link
    In this paper we develop a gapless theory of BEC which can be applied to both trapped and homogeneous gases at zero and finite temperature. The many-body Hamiltonian for the system is written in a form which is approximately quadratic with higher order cubic and quartic terms. The quadratic part is diagonalized exactly by transforming to a quasiparticle basis, while the non-quadratic terms are dealt with using first and second order perturbation theory. The conventional treatment of these terms, based on factorization approximations, is shown to be inconsistent. Infra-red divergences can appear in individual terms of the perturbation expansion, but we show analytically that the total contribution beyond quadratic order is finite. The resulting excitation spectrum is gapless and the energy shifts are small for a dilute gas away from the critical region, justifying the use of perturbation theory. Ultra-violet divergences can appear if a contact potential is used to describe particle interactions. We show that the use of this potential as an approximation to the two-body T-matrix leads naturally to a high-energy renormalization. The theory developed in this paper is therefore well-defined at both low and high energy and provides a systematic description of Bose-Einstein condensation in dilute gases. It can therefore be used to calculate the energies and decay rates of the excitations of the system at temperatures approaching the phase transition.Comment: 39 pages of Revtex. 1 figur

    Evolution of isolated neutron stars in globular clusters: number of Accretors

    Full text link
    With a simple model from the point of view of population synthesis we try to verify an interesting suggestion made by Pfahl & Rappaport (2001) that dim sources in globular clusters (GCs) can be isolated accreting neutron stars (NSs). Simple estimates show, that we can expect about 0.5-1 accreting isolated NS per typical GC with M=105M⊙M=10^5 M_{\odot} in correspondence with observations. Properties of old accreting isolated NSs in GCs are briefly discussed. We suggest that accreting NSs in GCs experienced significant magnetic field decay.Comment: 6 pages, no figures. Submitted to Astronomical and Astrophysical Transactions (style included

    On O-X mode conversion in 2D inhomogeneous plasma with a sheared magnetic field

    Full text link
    The conversion of an ordinary wave to an extraordinary wave in a 2D inhomogeneous slab model of the plasma confined by a sheared magnetic field is studied analytically.Comment: sub. to PPC
    • …
    corecore