351 research outputs found

    Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics

    Get PDF
    Circularly-polarized extreme ultraviolet and X-ray radiation is useful for analysing the structural, electronic and magnetic properties of materials. To date, such radiation has only been available at large-scale X-ray facilities such as synchrotrons. Here, we demonstrate the first bright, phase-matched, extreme ultraviolet circularly-polarized high harmonics source. The harmonics are emitted when bi-chromatic counter-rotating circularly-polarized laser pulses field-ionize a gas in a hollow-core waveguide. We use this new light source for magnetic circular dichroism measurements at the M-shell absorption edges of Co. We show that phase-matching of circularly-polarized harmonics is unique and robust, producing a photon flux comparable to linearly polarized high harmonic sources. This work represents a critical advance towards the development of table-top systems for element-specific imaging and spectroscopy of multiple elements simultaneously in magnetic and other chiral media with very high spatial and temporal resolution. Circularly-polarized radiation in the extreme ultraviolet (EUV)and soft X-ray spectral regions has proven to be extremelyuseful for investigating chirality-sensitive light–matter inter-actions. It enables studies of chiral molecules using photoelectron circular dichroism1, ultrafast molecular decay dynamics2, the direct measurement of quantum phases (for example, Berry’s phase and pseudo-spin) in graphene and topological insulators3,4 and reconstruction of band structure and modal phases in solids5

    High-harmonic generation: taking control of polarization

    Get PDF
    The ability to control the polarization of short-wavelength radiation generated by high-harmonic generation is useful not only for applications but also for testing conservation laws in physics

    Polarization-sensitive coherent diffractive imaging using HHG

    Get PDF
    High harmonic generation (HHG) from lasers have attractive properties for probing ultrafast dynamics at the nanoscale. The spectral range of high harmonics at the extreme-UV and soft-X-rays (λ∼ 100 nm–1 nm, ℏω∼ 10 eV–1 keV) enables element specificity, the short wavelengths combined with high spatial coherence allows for imaging with nanometric spatial resolution, the extremely short pulse durations provide access to dynamics faster than a femtosecond (1 fs=10−15 s), and all that, on a compact system. In this chapter, we focus on experimental aspects of imaging with high harmonics. First, we present the experimental system and the image reconstruction procedure. Second, we show experimental results from the various configurations that were used throughout this project. Finally, we discuss mechanisms that played an important role in this imaging effort, and would contribute to the advancement of nanoscale imaging
    corecore